The exact consistency strength of the generic absoluteness for the universally Baire sets

Grigor Sargsyan*
Nam Trang †

December 1, 2019

Abstract

A set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property. Sealing is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing.

The Largest Suslin Axiom (LSA) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let LSA – over – uB be the statement that in all (set) generic extensions there is a model of LSA whose Suslin, co-Suslin sets are the universally Baire sets.

We show that over some mild large cardinal theory, Sealing is equiconsistent with LSA – over – uB. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.6). As a consequence, we obtain that Sealing is weaker than the theory “ZFC+there is a Woodin cardinal which is a limit of Woodin cardinals”.

A variation of Sealing, called Tower Sealing, is also shown to be equiconsistent with Sealing over the same large cardinal theory.

The result is proven via Woodin’s Core Model Induction technique, and is essentially the ultimate equiconsistency that can be proven via the current interpretation of CMI as explained in the paper.

*Department of Mathematics, Rutgers University, NJ, USA. Email: gs481@math.rutgers.edu
†Department of Mathematics, University of North Texas, Denton, TX, USA. Email: Nam.Trang@unt.edu
Contents

1 **Introduction** 4

2 **An overview of the fine structure of the minimal LSA-hod mouse and excellent hybrid mice** 18
 2.1 Short tree strategy mice 22
 2.2 The authentication method 25
 2.3 Generic interpretability 28
 2.4 Excellent hod premice 30
 2.5 More on self-iterability 33
 2.6 Iterability of countable hulls. 36
 2.7 A revised authentication method 38
 2.8 Generic Interpretability 40
 2.9 Fully backgrounded constructions inside excellent hybrid premice 42
 2.10 Constructing an iterate via fully backgrounded constructions 45

3 **An upper bound for Sealing and LSA over uB** 46
 3.1 An upper bound for Sealing 47
 3.2 An upper bound for LSA over uB 53
 3.3 An upper bound for Tower Sealing 54

4 **Basic core model induction** 56

5 **L_p^{cuB} and L_p^{puB} operators** 59
 5.1 A proof of Theorem 1.6 65

6 **Condensing sets** 68

7 **Z-validated iterations** 74

8 **Z-validated sts constructions** 76
 8.1 Realizability array 77
 8.2 The Z-validated sts construction 82
 8.3 Break3 never happens 85
 8.4 Break4 never happens 89
 8.5 A conclusion 91

9 **Hybrid fully backgrounded constructions** 91
 9.1 The levels of HFBC(μ) 92
10 Putting it all together

10.1 The prototypical branch existence argument

10.2 One step construction

10.3 Stacking suitable sts mice

10.4 The conclusion assuming $\neg\text{Hypo}$

10.5 Excellent hybrid premouse from Hypo

11 Open problems and questions
1 Introduction

Soon after Cohen discovered forcing and established the consistency of the failure of the Continuum Hypothesis (CH) with ZFC, thus establishing the independence of CH from ZFC\(^1\), many natural and useful set theoretic principles have been discovered to remove independence from set theory. Perhaps the two best known ones are Shoenfield’s Absoluteness Theorem and Martin’s Axiom.

As is well known, Shoenfield’s Absoluteness Theorem, proved in [46], asserts that there cannot be any independence result expressible as a \(\Sigma^1_2\) fact. In the language of real analysis, \(\Sigma^1_2\) sets of reals are projections of co-analytic sets\(^2\). Shoenfield’s theorem says that a co-analytic set is empty if and only if its natural interpretations\(^3\) in all generic extensions are empty. What is so wonderful about Shoenfield’s Absoluteness Theorem is that it is a theorem of ZFC. We will discuss Martin’s Axiom and its generalization later on.

The goal of this paper is to establish an equiconsistency result between one Shoenfield-type generic absoluteness principle known as Sealing and a determinacy axiom that we abbreviated as LSA − over − uB. LSA stands for the Largest-Suslin-Axiom. To state the main theorem, we need a few definitions.

A set of reals is universally Baire if all of its continuous preimages in topological spaces have the property of Baire. Let \(\Gamma^\infty\) be the collection of universally Baire sets\(^4\). Given a generic \(g\), we let \(\Gamma^\infty_g = \text{def} (\Gamma^\infty)^{V[g]}\) and \(R_g = \text{def} R^{V[g]}\). \(\varphi(X)\) is the powerset of \(X\). AD stands for the Axiom of Determinacy and \(\text{AD}^+\) is a strengthening of AD due to Woodin. The reader can ignore the + or can consult [63, Definition 9.6].

Motivated by Woodin’s Sealing Theorem ([22, Theorem 3.4.17] and [62, Sealing Theorem]), we define Sealing, a key notion in this paper. We say \(V[g], V[h]\) are two successive generic extensions (of \(V\)) if \(g, h\) are \(V\)-generic and \(V[g] \subseteq V[h]\).

Definition 1.1 Sealing is the conjunction of the following statements.

1. For every set generic \(g\), \(L(\Gamma^\infty_g, R_g) \models \text{AD}^+\) and \(\varphi(R_g) \cap L(\Gamma^\infty_g, R_g) = \Gamma^\infty_g\).

\(^1\)Cohen proved that ZFC + ¬CH is consistent. Earlier, Gödel showed that ZFC + CH is consistent by showing that CH holds in the constructible universe \(L\). Forcing can also be used to show that ZFC + CH is consistent.

\(^2\)A set of reals is analytic if it is a projection of a closed set. A co-analytic set is the complement of an analytic set.

\(^3\)As open sets are unions of open intervals, it must be clear that they can be easily interpreted in any extension of the reals.

\(^4\)The superscript \(\infty\) in this notation, which is due to Woodin, makes sense as one can define \(\kappa\)-universally Baire sets as those sets whose continuous preimages in all \(\kappa\) size topological spaces have the property of Baire. We then set \(\Gamma^\kappa\) be the collection of all of these sets. Clearly \(\Gamma^\infty = \cap \kappa \Gamma^\kappa\).
2. For every two successive set generic extensions $V[g] \subseteq V[h]$, there is an elementary embedding

$$j : L(\Gamma_\infty^g, \mathcal{R}_g) \to L(\Gamma_\infty^h, \mathcal{R}_h).$$

such that for every $A \in \Gamma_\infty^g$, $j(A) = A_h$.\(^5\)

To introduce LSA — over \mathcal{U}, we first need to introduce the Largest Suslin Axiom (LSA). A cardinal κ is OD-inaccessible if for every $\alpha < \kappa$ there is no surjection $f : \varphi(\alpha) \to \kappa$ that is definable from ordinal parameters. A set of reals $A \subseteq \mathbb{R}$ is κ-Suslin if for some tree T on κ, $A = p[T]$.\(^6\) A set A is Suslin if it is κ-Suslin for some κ; A is co-Suslin if its complement $\mathbb{R}\setminus A$ is Suslin. A set A is Suslin, co-Suslin if both A and its complement are Suslin. A cardinal κ is a Suslin cardinal if there is a set of reals A such that A is κ-Suslin but A is not λ-Suslin for any $\lambda < \kappa$. Suslin cardinals play an important role in the study of models of determinacy as can be seen by just flipping through the Cabal Seminar Volumes ([14], [15], [16], [17], [18], [19], [20]).

The Largest Suslin Axiom was introduced by Woodin in [63, Remark 9.28]. The terminology is due to the first author. Here is the definition.

Definition 1.2 The Largest Suslin Axiom, abbreviated as LSA, is the conjunction of the following statements:

1. \mathbf{AD}^+.

2. There is a largest Suslin cardinal.

3. The largest Suslin cardinal is OD-inaccessible.

In the hierarchy of determinacy axioms, which one may appropriately call the Solovay Hierarchy\(^7\), LSA is an anomaly as it belongs to the successor stage of the Solovay Hierarchy but does not conform to the general norms of the successor stages

\(^5\)The meaning of A_h is explained below. It is the canonical extension of A to $V[h]$.

\(^6\)Given a cardinal κ, we say $T \subseteq \bigcup_{n<\omega} \omega^n \times \kappa^n$ is a tree on κ if T is closed under initial segments. Given a tree T on κ, we let $[T]$ be the set of its branches, i.e., $b \in [T]$ if $b \in \omega^\omega \times \kappa^\omega$ and letting $b = (b_0, b_1)$, for each $n \in \omega$, $(b_0 \upharpoonright n, b_1 \upharpoonright n) \in T$. We then let $p[T] = \{ x \in \mathbb{R} : \exists f((x, f) \in [T]) \}$.

\(^7\)Solovay defined what is now called the Solovay Sequence (see [63, Definition 9.23]). It is a closed sequence of ordinals with the largest element Θ, where Θ is the least ordinal that is not a surjective image of the reals. One then obtains a hierarchy of axioms by requiring that the Solovay Sequence has complex patterns. LSA is an axiom in this hierarchy. The reader may consult [37] or [63, Remark 9.28].
of the Solovay Hierarchy. Prior to [39], LSA was not known to be consistent. In [39], the first author showed that it is consistent relative to a Woodin cardinal that is a limit of Woodin cardinals. Nowadays, the axiom plays a key role in many aspects of inner model theory, and features prominently in Woodin’s Ultimate L framework (see [64, Definition 7.14] and Axiom I and Axiom II on page 97 of [64]).

Definition 1.3 Let LSA over uB be the statement: For all V-generic g, in V[g], there is A ⊆ Rg such that L(A, Rg) ⊨ LSA and Γg is the Suslin co-Suslin sets of L(A, Rg).

The following is our main theorem. We say that φ and ψ are equiconsistent over theory T if there is a model of T ∪ {φ} if and only if there is a model of T ∪ {ψ}.

Theorem 1.4 Sealing and LSA over uB are equiconsistent over “there exists a proper class of Woodin cardinals and the class of measurable cardinals is stationary”.

In Theorem 1.4, “T₁ and T₂ are equiconsistent” is used in the following stronger sense: there is a well-founded model of T₁ if and only if there is a well-founded model of T₂.

Remark 1.5 It is our intention to consider Sealing under large cardinals. The reason for doing this is that universally Baire sets do not in general behave nicely when there are no large cardinals in the universe. One may choose to drop clause 1 from the definition of Sealing. Call the resulting principle Weak Sealing. If there is an inaccessible cardinal κ which is a limit of Woodin cardinals and strong cardinals then Weak Sealing implies Sealing. This is because one may arrange so that Γ∞ is the derived model after Levy collapsing κ to be ω₁ (see Theorem 1.11). We do not know the consistency strength of Weak Sealing or Sealing in the absence of large cardinals. But one gets that Weak Sealing and Sealing are equiconsistent over the large cardinal hypothesis in Theorem 1.4.

The proof of the next theorem will be given in Section 5.1. **Hod Pair Capturing** (HPC) is the statement that whenever A is a Suslin co-Suslin set, there is a least-branch (lbr) hod pair (P, Σ) such that A is definable from parameters over (HC, ∈ , Σ). lbr hod pairs are define in [57, Section 5]. **No Long Extender** (NLE) is the statement: there is no countable, ω₁ + 1-iterable pure extender premouse M such that there is a long extender on the M-sequence. In the following theorem, we work

8The requirement in these axioms that there is a strong cardinal which is a limit of Woodin cardinals is only possible if L(A, R) ⊨ LSA.
in second-order set theory, namely the Von Neumann-Bernays- Gödel set theory (NBG).

A strong cardinal \(\kappa \) is said to be a strong reflecting strongs if whenever \(\lambda > \kappa \), there is an embedding \(j : V \to M \) such that \(\text{crit}(j) = \kappa, V_\lambda = V_\lambda^M \), and for any \(\gamma \in (\kappa, \lambda) \), \(\gamma \) is strong in \(V \) iff \(\gamma \) is strong in \(M \).

Theorem 1.6 (NBG) Assume there exists a proper class of Woodin cardinals and the class of strong reflecting strongs cardinals is stationary. Assume LSA – over – UB, NLE, and that HPC is true in all models of AD\(^+ \) appearing in some set generic extension. Then there is some generic extension \(V[g] \) of \(V \) such that \(V[g] \models \text{Sealing} \).

Based on the above theorems, it is very tempting to conjecture that: Sealing and LSA – over – uB are equivalent over “there exists a proper class of Woodin cardinals and the class of measurable cardinals is stationary”. However, [42] shows that this conjecture is false. The following variation of Sealing, called Tower Sealing, is also isolated by Woodin.

Definition 1.7 Tower Sealing is the conjunction of:

1. For any set generic \(g \), \(L(\Gamma^\infty_g) \models \text{AD}^+ \), and \(\Gamma^\infty_g = \wp(\mathbb{R}) \cap L(\Gamma^\infty_g, \mathbb{R}_g) \).
2. For any set generic \(g \), in \(V[g] \), suppose \(\delta \) is Woodin. Whenever \(G \) is \(V[g] \)-generic for either the \(\mathbb{P}_{<\delta} \)-stationary tower or the \(\mathbb{Q}_{<\delta} \)-stationary tower at \(\delta \), then

\[
j(\Gamma^\infty_g) = \Gamma^\infty_{g \ast G},
\]

where \(j : V[g] \to M \subset V[g \ast G] \) is the generic elementary embedding given by \(G \).

Theorem 1.8 Tower Sealing and Sealing are equiconsistent over “there exists a proper class of Woodin cardinals and the class of measurable cardinals is stationary”.

Remark 1.9 1. The proof of Theorems 1.4 and 1.8 shows that over the large cardinal assumption stated in Theorem 1.4, LSA – over – uB and Sealing are equiconsistent relative to the following consequence of Sealing and of Tower Sealing (cf. Proposition 4.1):

Sealing\(^\sim\): “for any set generic \(g \), \(\Gamma^\infty_g = \wp(\mathbb{R}) \cap L(\Gamma^\infty_g, \mathbb{R}_g) \) and there is no \(\omega_1 \) sequence of reals in \(L(\Gamma^\infty_g, \mathbb{R}_g) \).”
2. As mentioned above, [42] shows that LSA – over – UB is not equivalent to Sealing (over some large cardinal theory). However, the equivalence of Sealing, Tower Sealing, other weak forms of these theories may still hold (over the large cardinal theory of Theorem 1.4). See Conjecture 11.4.

3. Woodin has observed that assuming a proper class of Woodin cardinals which are limits of strong cardinals, TowerSealing implies Sealing.

Before giving the proof, in the next few sections we will explain the context of Theorem 1.4.

Generic Absoluteness

As was mentioned in the opening paragraph, the discovery of forcing almost immediately initiated the study of removing independence phenomenon from set theory. Large cardinals were used to establish a plethora of results that generalize Shoenfield’s Absoluteness Theorem to more complex formulas than Σ^1_2. In another direction, new axioms were discovered that imply what is forced is already true. These axioms are called forcing axioms, and Martin’s Axiom is the first one.

Forcing axioms assert that analogues of the Baire Category Theorem hold for any collection of \aleph_1-dense sets. A consequence of this is that the \aleph_1-fragment of the generic object added by the relevant forcing notion exists as a set in the ground model, implying that what is forced by the \aleph_1-fragment of the generic is already true in the ground model. Martin’s Axiom and its generalizations do not follow from ZFC. Many axioms of this type have been introduced and extensively studied. Perhaps the best known ones are Martin’s Axiom ([23]), the Proper Forcing Axiom (PFA, see [3]) and Martin’s Maximum (see [7]).

The general set theoretic theme described above is known as generic absoluteness. The interested reader can consult [2], [7], [8], [9], [22], [56], [58], [60], [61], [63] and the references appearing in those papers. We will not be dealing with forcing axioms in this paper, but PFA will be used for illustrative purposes.

The largest class of sets of reals for which a Shoenfield-type generic absoluteness can hold is the collection of the universally Baire sets. We will explain this claim below. The story begins with the fact that the universally Baire sets have canonical interpretations in all generic extensions, and in a sense, they are the only ones that have this property. The next paragraph describes exactly how this happens. The proofs appear in [6], [22] and [48].

In [6], it was shown by Feng, Magidor and Woodin that a set of reals A is universally Baire if and only if for each uncountable cardinal κ there are trees T and
S on κ such that \(p[T] = A \) and in all set generic extensions \(V[g] \) of \(V \) obtained by a poset of size \(< \kappa \), \(V[g] \models p[T] = \mathbb{R} - p[S] \). The canonical interpretation of \(A \) in \(V[g] \) is just \(A_g = \text{def} (p[T])^{V[g]} \) where \(T \) is chosen on a \(\kappa \) that is bigger than the size of the poset that adds \(g \). It is not hard to show, using the absoluteness of well-foundedness, that \(A_g \) is independent of the choice of \((T,S)\).

Woodin showed that if \(A \) is a universally Baire set of reals and the universe has a class of Woodin cardinals then the theory of \(L(A,\mathbb{R}) \) cannot be changed. He achieved this by showing that if there is a class of Woodin cardinals then for any universally Baire set \(A \) and any two successive set generic extensions \(V[g] \subseteq V[h] \), there is an elementary embedding \(j : L(A_g,\mathbb{R}_g) \rightarrow L(A_h,\mathbb{R}_h)^9 \).

Moreover, if sufficient generic absoluteness is true about a set of reals then that set is universally Baire. More precisely, suppose \(\phi \) is a property of reals. Let \(A_\phi \) be the set of reals defined by \(\phi \). If sufficiently many statements about \(A_\phi \) are generically absolute then it is because \(A_\phi \) is universally Baire (see the Tree Production Lemma in [22] or in [48])\(^10\). Thus, the next place to look for absoluteness is the set of all universally Baire sets.

Is it possible that there is no independence result about the set of universally Baire sets? Sealing, introduced in the preamble of this paper, is the formal version of the English sentence asserting that much like individual universally Baire sets, much like integers, the theory of universally Baire sets is immune to forcing. It is stated in the spirit of Woodin’s aforementioned theorem for the individual universally Baire sets.

While the definition of Sealing is very natural and its statement is seemingly benign, Sealing has drastic consequences on the Inner Model Program, which is one of the oldest set theoretic projects, and is also the next set theoretical theme that we introduce.

The Inner Model Program and The Inner Model Problem

The goal of the Inner Model Program (IMP) is to build canonical \(L \)-like inner models with large cardinals. The problem of building a canonical inner model for a large cardinal axiom \(\phi \) is known as the Inner Model Problem (IMPr) for \(\phi \). There are several expository articles written about IMP and IMPr. The reader who wants to learn more can consult [11], [37], [43].

In [30], Neeman, assuming the existence of a Woodin cardinal that is a limit of

\(^9\)Unfortunately, the authors do not know a reference for this theorem of Woodin. But it can be proven via the methods of [22] and [48].

\(^10\)The exact condition is that club of countable Skolem hulls are generically correct.
Woodin cardinals, solved the IMPr for a Woodin cardinal that is a limit of Woodin cardinals and for large cardinals somewhat beyond. Neeman’s result is the best current result on IMPr. However, this is only a tiny fragment of the large cardinal paradise, and also its solution is specific to the hypothesis (we will discuss this point more).

Dramatically, Sealing implies that IMP, as is known today, cannot succeed as if \(\mathcal{M} \) is a model that conforms to the norms of modern inner model theory and has some very basic closure properties then \(\mathcal{M} \models \text{“there is a well-ordering of reals in } L(\Gamma^\infty, \mathbb{R}) \text{”} \). As AD implies the reals cannot be well-ordered, \(\mathcal{M} \) cannot satisfy Sealing. Thus, we must have the following\(^{11}\).

Sealing Dichotomy
Either no large cardinal theory implies Sealing or the Inner Model Problem for some large cardinal cannot have a solution conforming to the modern norms.

Intriguingly, Woodin, assuming the existence of a supercompact cardinal and a class of Woodin cardinals, has shown that Sealing holds after collapsing the powerset of the powerset of a supercompact cardinal to be countable (for a proof, see [22, Theorem 3.4.17]). Because we are collapsing the supercompact to be countable, it seems that Woodin’s result does not imply that Sealing has dramatic effect on IMP, or at least this impact cannot be seen in the large cardinal region below supercompact cardinals, which is known as the short extender region.

As part of proving Theorem 1.4 and Theorem 1.8, we will establish that

\textbf{Theorem 1.10} Sealing is consistent relative to a Woodin cardinal that is a limit of Woodin cardinals. So is Tower Sealing.

One consequence of Theorem 1.10 is that Sealing is within the short extender region. While Theorem 1.10 doesn’t illustrate the impact of Sealing, its exact impact on IMP in the short extender region can also be precisely stated. But to do this we will need extenders.

\textbf{Extender Detour}

Before we go on, let us take a minute to explain the concept of an extender, which is a natural generalization of ultrafilters. In fact, extenders are just a coherent sequence of ultrafilters. As was mentioned above, the goal of IMP is to build canonical

\(^{11}\)Sealing Dichotomy is well-known among inner model theorists, we do not mean that we were the first to notice it.
L-like inner models for large cardinals. The current methodology is that such models should be constructed in Gödel’s sense from extenders, the very objects whose existence large cardinal axioms assert. Perhaps the best way to introduce extenders is via the elementary embeddings that they induce.

Suppose M and N are two transitive models of set theory and $j: M \to N$ is a non-trivial elementary embedding. Let $\kappa = \text{crit}(j)$ and let $\lambda \in [\kappa, j(\kappa))$ be any ordinal. Set

$$E_j = \{ (a, A) \in [\lambda]^{<\omega} \times \wp(\kappa)^M : a \in j(A) \}.$$

E_j is called the (κ, λ)-extender derived from j. E_j is really an M-extender as it measures the sets in M. As with more familiar ultrafilters, one can define extenders abstractly without using the parent embedding j, and then show that each extender, via an ultrapower construction, gives rise to an embedding. Given a (κ, λ)-extender E over M, we let $\pi_E: M \to \text{Ult}(M, E)$ be the ultrapower embedding. A computation that involves chasing the definitions shows that E is the extender derived from π_E.

Similar computations also show that $\kappa = \text{crit}(\pi_E)$ and $\pi_E(\kappa) \geq \lambda$. It is customary to write $\text{crit}(E)$ for κ and $\text{lh}(E) = \lambda^{12}$. It is also not hard to see that for each $a \in [\lambda]^{<\omega}$, E_a is an ultrafilter concentrating on $[\kappa]^{|a|}$, and that E_a projects to E_{a}. The motivation behind extenders is the fact that extenders capture more of the universe in the ultrapower than one can achieve via the usual ultrapower construction. In particular, under large cardinal assumptions, one can have (κ, λ)-extender E such that $V_\lambda \subseteq \text{Ult}(V, E)$. Because of this all large cardinal notions below superstrong cardinals can be captured by extenders.

The extenders as we defined them above are called short extenders, where shortness refers to the fact that all of its ultrafilters concentrate on its critical point. Large cardinal notions such as supercompactness, hugeness and etc cannot be captured by such short extenders as embeddings witnessing supercompactness gives rise to measures that do not concentrate on the critical point of the embedding. However, one can capture these large cardinal notions by using the so-called long extenders. We do not need them in this paper, and so we will not dwell on them.

The large cardinal region that can be captured by short extenders is the region of superstrong cardinals. A cardinal κ is called superstrong if there is an embedding $j: V \to M$ with $\text{crit}(j) = \kappa$ and $V_{j(\kappa)} \subseteq M$. Superstrong cardinals are close to the optimal cardinal notions that can be expressed via short extenders.

Currently, to solve IMP for a large cardinal, one attempts to build a model of the form $L[\vec{E}]$ where \vec{E} is a carefully chosen sequence of extenders. The reader interested

\[12^{\text{"lh}(E) \text{ is the length of } E"}.\]
in learning more about what $L[\vec{E}]$ should be can consult [55]. This ends our detour.

The Core Model Induction

What is a solution to the IMPr for a given large cardinal? In the short extender region, IMPr for a large cardinal notion such as superstrong cardinals has a somewhat precise meaning. One is essentially asked to build a model of the form $L[\vec{E}]$ which has a superstrong cardinal and \vec{E} is a fine extender sequence as defined in [55, Definition 2.4]. However, one may do this construction under many different hypotheses.

As was mentioned above, Neeman solved the IMPr for a Woodin cardinal that is a limit of Woodin cardinals assuming the existence of such a cardinal. One very plausible precise interpretation of IMPr is exactly in this sense. Namely given a large cardinal axiom ϕ, assuming large cardinals that are possibly stronger than ϕ, build an $\mathcal{M} = L[\vec{E}]$ such that $\mathcal{M} \models \exists \kappa \phi(\kappa)$.

Our interpretation of IMPr is influenced by John Steel’s view on Gödel’s Program (see [56]). In a nutshell, the idea is to develop a theory that connects various foundational frameworks such as Forcing Axioms, Large Cardinals, Determinacy Axioms etc with one another.13 In this view, IMPr is the bridge between all of these natural frameworks and IMPr needs to be solved under variety of hypotheses, such as PFA or failure of Jensen’s \Box principles. Our primary tool for solving IMPr in large-cardinal-free contexts is the Core Model Induction (CMI), which is a technique invented by Woodin and developed by many set theorists during the past 20-25 years.14

In the earlier days, CMI was perceived as an inductive method for proving determinacy in models such as $L(\mathbb{R})$. The goal was to prove that $L_\alpha(\mathbb{R}) \models \text{AD}$ by induction on α. In those earlier days, which is approximately the period 1995-2010, the method worked by establishing intricate connections between large cardinals, universally Baire sets and determinacy.15 The fundamental work done by Jensen, Neeman, Martin, Mitchell, Steel and Woodin were, and still are, at the heart of current developments of CMI. The following is a non-exhaustive list of influential papers: most papers in the Cabal Seminar Volumes that discuss scales or playful universes ([14], [15], [16], [17], [18], [19], [20], [10], [24], [25], [27], [29], [51]). Several fundamental papers were written implicitly developing this view of CMI. For exam-

13Our goal here is to avoid philosophical discussions, but if we were to go in this direction we would call this view approach to IMPr Steel’s Program.

14In some contexts, K^c theory can also be used. See [12]. But solving IMPr via a K^c theory won’t in general provide such bridges between frameworks. The K^c approach will not in general connect say PFA with the Solovay Hierarchy. See Conjecture 1.12.

15For example, the reader may try to understand the meaning of W^*_α in [47].
ple, the reader can consult [21], [47] and [50]. As CMI evolved, it became more of a tool for deriving maximal determinacy models from non-large cardinal hypotheses.

In a seminal work, Woodin has developed a technique for deriving determinacy models from large cardinals. The theorem is known as the Derived Model Theorem. A typical situation works as follows. Suppose \(\lambda \) is a limit of Woodin cardinals and \(g \subseteq Coll(\omega, < \lambda) \) is generic. Let \(R^* = \bigcup_{\alpha < \lambda} R^{V[g \cap Coll(\omega, \alpha)]} \). Working in \(V(R^*) \)\(^{16}\) let \(\Gamma = \{ A \subseteq \mathbb{R} : L(A, \mathbb{R}) \Vdash AD \} \). Then

Theorem 1.11 (Woodin, [48]) \(L(\Gamma, \mathbb{R}) \Vdash AD \).

In Woodin’s theorem, \(\Gamma \) is maximal as there are no more (strongly) determined sets in the universe that are not in \(\Gamma \). If one assumes that \(\lambda \) is a limit of strong cardinals then \(\Gamma \) above is just \(\Gamma^V(\mathbb{R}^*) \).

The aim of CMI is to do the same for other natural set theoretic frameworks, such as forcing axioms, combinatorial statements etc. Suppose \(T \) is a natural set theoretic framework and \(V \models T \). Let \(\kappa \) be an uncountable cardinal. One way to perceive CMI is the following.

(CMI at \(\kappa \)) Saying that one is doing Core Model Induction at \(\kappa \) means that for some \(g \subseteq Coll(\omega, \kappa) \)\(^{17}\), in \(V[g] \), one is proving that \(L(\Gamma^\infty, \mathbb{R}) \Vdash AD^+ \).

(CMI below \(\kappa \)) Saying that one is doing Core Model Induction below \(\kappa \) means that for some \(g \subseteq Coll(\omega, < \kappa) \)\(^{18}\), in \(V[g] \), one is proving that \(L(\Gamma^\infty, \mathbb{R}) \Vdash AD^+ \).

In both cases, the aim might be less ambitious. It might be that one’s goal is to just produce \(\Gamma \subseteq \Gamma^\infty \) such that \(L(\Gamma, \mathbb{R}) \) is a determinacy model with desired properties.

CMI can even help proving versions of the Derived Model Theorem. Here is an example. Suppose \(A \in V(\mathbb{R}^*) \) is a set of reals such for some \(\alpha < \lambda \) there is a \(< \lambda \)-universally Baire set \(B \in V[g \cap Coll(\omega, \alpha)] \) such that \(A = B_g \). The tools developed during the earlier period of CMI can be used to show that \(L(A, \mathbb{R}^*) \Vdash AD \). The point here is just that CMI is the most general method for proving derived model type of results. In Woodin’s case, the presence of large cardinals makes CMI unnecessary, but in other cases it is the only method we currently have. One can also attempt to prove the full Derived Model Theorem via CMI, but this seems harder and some of the main technical difficulties associated with other non-large cardinal frameworks resurface.

\(^{16}\)This is the minimal transitive model \(W \) of ZF such that \(V \subseteq W \) and \(\mathbb{R}^* \in W \). It can be shown that \(R^W = \mathbb{R}^* \).

\(^{17}\)This is the poset that collapses \(\kappa \) to be countable.

\(^{18}\)This is the poset that collapses everything \(< \kappa \) to be countable.
The goal, however, is not to just derive a determinacy model from natural set theoretic frameworks, but to establish that the determinacy model has the same set theoretic complexity as V has.

Let M be the maximal model of determinacy derived from V. One natural\(^{19}\) way of saying that M has the same complexity as V is by saying that the large cardinal complexity of V is reflected into M, and one particularly elegant way of saying this is to say that HOD\(^{M}\), the universe of the hereditarily ordinal definable sets of M, acquires these large cardinals. A typical conjecture that we can now state in this language is as follows.

Conjecture 1.12 Assume the Proper Forcing Axiom and suppose $\kappa \geq \omega_2$. Let $g \subseteq \text{Coll}(\omega, \kappa)$. Then HOD\(^{L(\Gamma^\infty_{\omega} R)}\) \models “there is a superstrong cardinal”.

A less ambitious conjecture would be that PFA implies that whenever $g \subseteq \text{Coll}(\omega, \kappa)$ is V-generic, there is a set of reals $A \in \Gamma^\infty_{\omega} g$ such that HOD\(^{L(A, R)}\) \models “there is a superstrong cardinal”. However, we believe that the stronger conjecture is also true. One can change PFA to any other natural framework that is expected to be stronger than superstrong cardinals.\(^{20}\) As we brought up HOD, it is perhaps important to discuss its use in CMI.

HOD Analysis and Covering

Conjecture 1.12 is a product of many decades of work that goes back to the UCLA’s Cabal Seminar, where the study of *playful universes* originates (see, for example, [4] and [28]). Our attempt is to avoid a historical introduction to the subject, and so we will avoid the long history of studying HOD and its playful inner models assuming determinacy.

Nowadays, we know that HOD of many models satisfying AD is an L-like model carrying many large cardinals,\(^{21}\) and the problem of showing that HOD of every model of AD is an L-like model is one of the central open problems of descriptive inner model theory (see [37] and [57]).

The current methodology for proving that HOD\(^{L(\Gamma^\infty_{\omega} R)}\) has the desired large cardinals is via a failure of certain covering principle involving HOD\(^{L(\Gamma^\infty_{\omega} R)}\). Recall that

\(^{19}\)That this way of stating the desired closeness is *natural* is a consequence of several decades of research carried out on HOD of models of determinacy. See the fragment of the introduction titled HOD Analysis.

\(^{20}\)In some cases, we work in $V[g]$ for $g \subseteq \text{Coll}(\omega, \kappa)$ for some κ. In other cases, we may work in $V[g]$ for $g \subseteq \text{Coll}(\omega, < \kappa)$. Whether one does CMI at κ or below κ is hypothesis dependent.

\(^{21}\)See for example [13],[33],[39].

14
under determinacy, Θ is defined to be the least ordinal that is not a surjective image of the reals. Set $H^- = \text{HOD}^{L(\Gamma^\infty, R)}|\Theta$.

To define the aforementioned covering principle, we first need to extend H^- to a model H in which Θ is the largest cardinal. This is a standard construction in inner model theory. We simply let H be the union of all hod mice extending H whose countable submodels have iteration strategies in $L(\Gamma^\infty, R)$. This sentence perhaps means little to a general reader. It turns out, however, that in many situations it is possible to describe H without any reference to inner model theoretic objects.

Here is one such example. Suppose κ is a measurable cardinal and suppose we are doing CMI below κ. Let $j : V \rightarrow M$ be any embedding with $\text{crit}(j) = \kappa$. We furthermore assume that we have succeeded in showing that $\sup(j[\Theta]) < j(\Theta)$22. Setting $\nu = \sup(j[\Theta])$, let $C(H^-)$ be the set of all $A \subseteq \Theta$ such that $j(A) \cap \nu \in j(H^-)$. Then H is the transitive model extending H^- that is coded by the elements of $C(H^-)$23.

At any rate, regarding H as a canonical one-cardinal extension of H^- is all the reader must do in order to follow the rest. In fact, that H is a canonical extension of H^- is the central point. The next paragraph explains this.

Continuing with the above scenario, let now $g \subseteq \text{Coll}(\omega, \kappa)$ be V-generic. Recall that above we were doing CMI below κ, meaning that the relevant collapse was $\text{Coll}(\omega, \kappa)$. Because $|V_\kappa| = \kappa$, we have that $|H^-|^V[g] = \aleph_0$ and $|H|^V[g] \leq \aleph_1$. Letting $\eta = \text{Ord} \cap H$,

$$L(\Gamma^\infty, R^g) \models \text{"there is an } \eta \text{-sequence of distinct reals"}.$$

Assuming Sealing, we get that $\eta < \omega_1$ as under Sealing, $L(\Gamma^\infty, R^g) \models \text{AD}$, and under AD there is no ω_1-sequence of reals. Therefore, in V, $\eta < \kappa^+$ as we have that $(\kappa^+)^V = \omega_1^{V[g]}$. Letting now

$$\text{UB} - \text{Covering} : \text{cf}^V(\text{Ord} \cap H) \geq \kappa,$$

Sealing implies that $\text{UB} - \text{Covering}$ fails at measurable cardinals. A similar argument can be carried out by only assuming that κ is a singular strong limit cardinal.24

22This condition happens quite often

23Fix a pairing function $\pi : \Theta^2 \rightarrow \Theta$. Given $A \subseteq C(H^-)$ we say A is a code if $M_A = (\Theta, E_A)$ is a well-founded model where $E_A \subseteq \Theta^2$ is given by $(\alpha, \beta) \in E_A \iff \pi(\alpha, \beta) \in A$. If $A \in C(H^-)$ is a code then let M_A be the transitive collapse of M_A. Then H is the union of models of the form M_A.

24In this case, H is defined in $V(\mathbb{R}^*)$, where $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[\alpha \cap \text{Col}(\omega, \alpha)]}$ and $h \subseteq \text{Coll}(\omega, \kappa)$ is V-generic.
All other sufficiently strong frameworks also imply that the UB - Covering fails but for different reasons. One particular reason is that UB - Covering implies that Jensen’s □_k holds at singular cardinal κ, while a celebrated theorem of Todorcevic says that under PFA, □_k has to fail for all κ ≥ ω₂.

The argument that has been used to show that ℋ has large cardinals proceeds as follows. Pick a target large cardinal φ, which for technical reasons we assume is a Σ₂-formula. Assume ℋ ⊨ ∀γ¬φ(γ). Thus far, in all applications of the CMI, the facts that

\[φ - \text{Minimality} : ℋ ⊨ ∀γ¬φ(γ) \]

and

\[\neg \text{UB - Covering: } \text{cf}'(ℋ \cap \text{Ord}) < κ \]

hold have been used to prove that there is a universally Baire set not in Γ^∞_g where g ⊆ Coll(ω, κ) or g ⊆ Coll(ω, < κ) (depending where we do CMI), which is obviously a contradiction.

Because of the work done in the first 15 years of the 2000s, it seemed as though this is a general pattern that will persist through the short extender region. That is, for any φ that is in the short extender region, either φ - Minimality must fail or UB - Covering must hold. The main way Theorem 1.10 affects IMPr in the short extender region is by implying that this prevalent view is false. ²⁵

Almost all existing literature on CMI uses the argument outlined above in one way or another. The interested reader can consult [1], [33], [39], [40],[47], [59], [66].

The future of CMI

In the authors’ view, CMI should be viewed as a technique for proving that certain type of covering holds rather than a technique for showing that HOD has large cardinals. The latter should be the corollary, not the goal. The type of covering that we have in mind is the following. We state it in the short extender region, and we use NLE²⁶ of [57] to state that we are in the short extender region.

Conjecture 1.13 Assume NLE and suppose there are unboundedly many Woodin cardinals and strong cardinals. Let κ be a limit of Woodin cardinals and strong cardinals such that either κ is a measurable cardinal or has cofinality ω. Then there is a transitive model M of ZFC - Powerset such that

²⁵Example of φ(γ) is: “γ is a Woodin cardinal which is a limit of Woodin cardinals”.
²⁶“No Long Extender”
1. \(\text{Ord} \cap M = \kappa^+ \),

2. \(M \) has a largest cardinal \(\nu \),

3. for any \(g \subseteq \text{Coll}(\omega, < \kappa) \), letting \(\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[g \cap \text{Coll}(\omega, \alpha)]} \), in \(V(\mathbb{R}^*) \),
\[
L(M, \bigcup_{\alpha < \nu} (M|\alpha)^\omega, \Gamma^\infty, \mathbb{R}) \models \text{AD}.
\]

4. If in addition there is no inner model with a subcompact cardinal then \(M \models \Box_{\nu} \).

With more work, the conjecture can also be stated without assuming the large cardinals. We do not believe that the conjecture is true in the long extender region because of the following general argument. Assume \(\kappa \) is an indestructible supercompact cardinal and suppose the conclusion of the conjecture holds at \(\kappa \). Let \(g \subseteq \text{Coll}(\kappa, \kappa^+) \). Then presumably if \(M \) satisfies the conclusion of Conjecture 1.13, then \(M^V = M^V[g] \). The confidence that this is true comes from the fact that we expect that any \(M \) satisfying clause 3 must have an absolute definition. Because \(\kappa \) is still a supercompact in \(V[g] \), clause 1 has to fail.

We believe that proving Conjecture 1.13 should become the goal of CMI. To prove it, one has to develop techniques for building third order canonical objects, objects that are canonical subsets of \(\Gamma^\infty \).

One possible source of such objects is described in forthcoming [41]. There, the authors introduced the notion of \(Z \)-hod pairs and developed their basic theory. We should also note that even in this paper, to prove Theorem 1.4 we build objects that resemble objects that are of third order. We build our third order objects more or less according to the current conventions following [39]. What we meant above is that we believe that to get to superstrongs an entirely new kinds of canonical objects need to be constructed. The reader can read more about such speculations in the forthcoming [34] and [35].

The abstract claimed that Theorem 1.4 is the ultimate equiconsistency proved via CMI. This does not mean that there are no other equiconsistencies in the region of LSA. All it means is that to go beyond, one has to start thinking of CMI as a method of building third order objects.

The authors view Theorem 1.4 as a natural accumulation point in the development of their understanding of CMI and the way it is used to translate set theoretic strength between natural set theoretic frameworks, namely between forcing axioms, large cardinals, determinacy and other frameworks. It has been proven by arriving at it via a 15 year long process of trying to understand CMI. Because of this, we feel that it is a theorem proven by the entire community rather than by the authors. We
especially thank Hugh Woodin and John Steel for their influential ideas throughout the first 25 years of the Core Model Induction.

The history of Theorem 1.4 is as follows. The first author, in [32], stated a conjecture that in his view captured the ideas of the first 15 years of the 2000s, namely that $\phi − \text{Minimality}$ and $\neg \text{UB} − \text{Covering}$ cannot co-exist in the short extender region. Unfortunately, very soon after finishing that paper he realized that the covering conjecture of that paper has to fail in the region of LSA^{27}. However, no easily quotable theorem was proven by him. It was not until Fall of 2018 when the second author was visiting the first author, that they realized that Theorem 1.4 says exactly that $\phi − \text{Minimality}$ and $\neg \text{UB} − \text{Covering}$ can coexist in the short extender region.

Acknowledgement. We would like to thank Hugh Woodin for many comments made about the earlier drafts of this paper, and especially for pointing out an easier argument demonstrating that $\text{LSA} − \overline{\text{uB}}$ is not equivalent to Sealing and for bringing the Tower Sealing to our attention. We also thank Ralf Schindler for useful suggestion regarding our use of second order set theory. The authors would like to thank the NSF for its generous support. The first author is supported by NSF Career Award DMS-1352034. The second author is supported by NSF Grant No DMS-1565808 and DMS-1849295.

2 An overview of the fine structure of the minimal LSA-hod mouse and excellent hybrid mice

As was mentioned above, the proof of Theorem 1.4 is an accumulation of many ideas developed in the last 20 years. We will try to develop enough of the required background in general terms so that a reader familiar with the terminology of descriptive inner model theory can follow the arguments. The main technical machinery used in the proof is developed more carefully in [39]. In the next few sections we will write an introduction to this technical machinery intended for set theorists who are familiar with [37].

We say that M is a minimal model of LSA if

1. $M \models \text{LSA}$,

2. $M = L(A, \mathbb{R})$ for some $A \subseteq \mathbb{R}$, and

27The exact theorem was that if P is a lsa type hod premouse, δ is the largest Woodin cardinal of P, $\kappa < \delta$ is the least $< \delta$-strong cardinal that reflects the set of $< \delta$-strong cardinals and μ is a $< \delta$-strong cardinal larger than κ then in P, $\text{UB} − \text{Covering}$ must fail at μ. This theorem was presented at the Fourth European Set Theory Conference in Mon St Benet in 2013.
3. for any \(B \in \wp(\mathbb{R}) \cap M \) such that \(w(B) < w(A) \), \(L(B, \mathbb{R}) \vDash \neg \text{LSA} \).

It makes sense to talk about “the” minimal model of LSA. When we say \(M \) is the minimal model of LSA we mean that \(M \) is a minimal model of LSA and \(\text{Ord}, \mathbb{R} \subseteq M \). Clearly from the prospective of a minimal model of LSA, the universe is the minimal model of LSA. The proof of [39, Theorem 10.3.1] implies that there is a unique minimal model of LSA such that \(\text{Ord}, \mathbb{R} \subseteq M \). This unique minimal model of LSA is the minimal model of LSA.

One of the main contributions of [39] is the detailed description of \(V_{\Theta}^{\text{HOD}} \) assuming that the universe is the minimal model of LSA. The early chapters of [39] deal with what is commonly referred to as the HOD analysis. These early chapters introduce the notion of a short-tree-strategy mouse, which is the most important technical notion studied by [39]. To motivate the need for this concept, we first recall some of the other aspects of the HOD analysis.

Recall the Solovay Sequence (for example, see [33, Definition 0.9] or [63, Definition 9.23]). Recall that \(\Theta \) is the least ordinal that is not a surjective image of the reals. The Solovay Sequence is a way of measuring the complexity of the surjections that can be used to map the reals onto the ordinals below \(\Theta \). Assuming AD, let \((\theta_\alpha : \alpha \leq \Omega) \) be a closed in \(\Theta \) sequence of ordinals such that

1. \(\theta_0 \) is the least ordinal \(\eta \) such that \(\mathbb{R} \) cannot be mapped surjectively onto \(\eta \) via an ordinal definable function,

2. for \(\alpha + 1 \leq \Omega \), fixing a set of reals \(A \) such that \(A \) has Wadge rank \(\theta_\alpha \), \(\theta_{\alpha+1} \) is the least ordinal \(\eta \) such that \(\mathbb{R} \) cannot be mapped surjectively onto \(\eta \) via a function that is ordinal definable from \(A \),

3. for limit ordinal \(\lambda \leq \Omega \), \(\theta_\lambda = \sup_{\alpha < \lambda} \theta_\alpha \), and

4. \(\Omega \) is least such that \(\theta_\Omega = \Theta \).

It follows from the definition of LSA (Definition 1.2) that if \(\kappa \) is the largest Suslin cardinal then it is a member of the Solovay Sequence. It is not hard to show that LSA is a much stronger axiom than \(\text{AD}_{\mathbb{R}} + \{ \Theta \text{ is regular}. \) Under LSA, letting \(\kappa \) be the largest Suslin cardinal, there is an \(\omega \)-club \(C \subseteq \delta \) such that for every \(\lambda \in C \), \(L(\Gamma_\lambda, \mathbb{R}) \vDash \text{AD}_{\mathbb{R}} + \lambda = \Theta + \Theta \text{ is regular} \), where \(\Gamma_\lambda = \{ A \subseteq \mathbb{R} : w(A) < \lambda \} \).\(^{29}\)

\(^{28}\)This proof of [39, Theorem 10.3.1] shows that the common part of a divergent models of AD contains a minimal model of LSA.

\(^{29}\)This theorem is probably due to Woodin. The outline of the proof is as follows. By an unpublished theorem of Woodin (but see [38, Theorem 1.9]), \(\kappa \) is a measurable cardinal, as it is a regular cardinal. It follows that for an \(\omega \)-club \(C \), if \(\lambda \in C \) then HOD \(\vDash \lambda \text{ is regular} \). Hence, \(L(\Gamma_\lambda, \mathbb{R}) \vDash \text{AD}_{\mathbb{R}} + \lambda = \Theta + \Theta \text{ is regular} \). For the proof of the last inference see [5, Theorem 2.3].
Assume now that V is the minimal model of LSA. It follows from the work done in [39] that for every κ that is a member of the Solovay Sequence but is not the largest Suslin cardinal there is a hod pair (\mathcal{P}, Σ) such that

1. the Wadge rank of Σ (or rather the set of reals coding Σ) is $\geq \kappa$ and

2. for some $\eta \in \mathcal{P}$, letting $\mathcal{M}_{\infty}(\mathcal{P}, \Sigma)$ be the direct limit of all countable iterates of \mathcal{P} via Σ and $\pi_{\Sigma, \infty}^{\mathcal{P}}: \mathcal{P} \to \mathcal{M}_{\infty}(\mathcal{P}, \Sigma)$ be the iteration map, then V_{κ}^{HOD} is the universe of $\mathcal{M}_{\infty}(\mathcal{P}, \Sigma)|\eta$.

A technical reformulation of the above fact appears as [39, Theorem 7.2.2].

The situation, however, is drastically different for the largest Suslin cardinal. Let κ be the largest Suslin cardinal. The inner model theoretic object that has Wadge rank κ cannot be an iteration strategy. This is because if Σ is an iteration strategy with nice properties like hull condensation30 then assuming AD holds in $L(\Sigma, R)$, $L(\Sigma, R) \models \text{"$M_{\infty}^{\#}$ exists and is ω_1-iterable"}$31. This then easily implies that Σ is both Suslin and co-Suslin.

The inner model theoretic object that has Wadge rank κ is a short tree strategy, which is a partial iteration strategy. Suppose \mathcal{P} is any iterable structure and Σ is its iteration strategy. Suppose δ is a Woodin cardinal of \mathcal{P}. Given $T \in \text{dom}(\Sigma)$ that is based on $\mathcal{P}|\delta$, we say that T is Σ-short if letting $\Sigma(T) = b$, either the iteration map π_b^T is undefined or $\pi_b^T(\delta) > \delta(T)$. If T is not Σ-short then we say that it is Σ-maximal. We then set Σ^{stc} be the fragment of Σ that acts on short trees. More precisely, $\Sigma^{\text{stc}}(T) = b$ if and only if

1. T is Σ-short and $\Sigma(T) = b$, or

2. T is Σ-maximal and letting $c = \Sigma(T)$, $b = M^T_c$.

Thus, Σ^{stc} tells us the branch of a Σ-short tree or the last model of a Σ-maximal tree.

The reader can perhaps imagine many ways of defining the notion of short tree strategy without a reference to an actual strategy. The convention that we adopt in this paper is the following. If Λ is a short tree strategy for \mathcal{P} then we will require that

1. for some \mathcal{P}-cardinal δ, $\mathcal{P} = (\mathcal{P}|\delta)^\#$ and $\mathcal{P} \models \text{"δ is a Woodin cardinal"}$,

30Σ must also satisfy some form of generic interpretability, i.e., there must be a way to interpret Σ on the the generic extensions of $M_{\infty}^{\#}$.

31This can be prove by a Σ_2-reflection argument.
2. if δ is as above and ν is the least δ-strong cardinal of \mathcal{P} then $\mathcal{P} \models \text{“}\nu \text{ is a limit of Woodin cardinals”}$,

3. given an iteration tree $\mathcal{T} \in \text{dom}(\Lambda)$, $\Lambda(\mathcal{T})$ is either a cofinal well-founded branch of \mathcal{T} or is equal to $(\mathcal{M}(\mathcal{T}))^\#$,

4. for all iteration trees $\mathcal{T} \in \text{dom}(\Lambda)$, if $\Lambda(\mathcal{T})$ is a branch b then $\pi^\delta_b(\delta) > \delta(\mathcal{T})$,

5. for all iteration trees $\mathcal{T} \in \text{dom}(\Lambda)$, if $\Lambda(\mathcal{T})$ is a model then $(\mathcal{M}(\mathcal{T}))^\# \models \text{“}\delta(\mathcal{T})\text{ is a Woodin cardinal”}$.

If a hod mouse \mathcal{P} has properties 1 and 2 above then we say that \mathcal{P} is of lsa type.

The set of reals that has Wadge rank κ is some short tree strategy Λ. The hod mouse \mathcal{P} that Λ iterates has a unique Woodin cardinal δ such that if $\nu < \delta$ is the least cardinal that is $< \delta$-strong in \mathcal{P}, then $\mathcal{P} \models \text{“}\nu \text{ is a limit of Woodin cardinals”}$. The aforementioned Woodin cardinal δ is also the largest Woodin cardinal of \mathcal{P}. This fact is proven in [39] (for example, see [39, Theorem 7.2.2] and [39, Chapter 8]). There is yet another way that the LSA stages of the Solovay Sequence are different from other points.

We continue assuming that V is the minimal model of LSA. If Σ is a strategy of a hod mouse with nice properties then ordinal definability with respect to Σ is captured by Σ-mice. More precisely, [39, Theorem 10.2.1] implies that if x and y are reals then x is ordinal definable from y using Σ as a parameter if and only if there is a Σ-mouse \mathcal{M} over y such that $x \in \mathcal{M}$.

[39, Theorem 10.2.1] also implies that the same conclusion is true for short tree strategies. Namely, if Λ is a short tree strategy then for x and y reals, x is ordinal definable from y using Λ as a parameter if and only if there is a Λ-mouse \mathcal{M} over y such that $x \in \mathcal{M}$. Theorems of this sort are known as Mouse Capturing theorems. Such theorems are very important when analyzing models of determinacy using inner model theoretic tools.

For a strategy Σ the concept of a Σ-mouse has appeared in many places. The reader can consult [33, Definition 1.20] but the notion probably was first mentioned in [47] and was finally fully developed in [44].

A Σ-mouse \mathcal{M}, besides having an extender sequence also has a predicate that indexes the strategy. The idea, which is due to Woodin, is that the strategy predicate should index the branch of the least tree that has not yet been indexed.

Unfortunately this idea doesn’t quite work for Λ-mice where Λ is a short tree strategy. In the next subsection, we will explain the solution presented in [39].

\footnote{The difference between a mouse and a mouse over y is the same as the difference between L and $L[x]$.}
2.1 Short tree strategy mice

We are assuming that V is the minimal model of LSA. Suppose Λ is a short tree strategy for a hod mouse \mathcal{P}. We let δ be the Woodin cardinal of \mathcal{P}. Thus, $\mathcal{P} = (\mathcal{P}|\delta)^\#$. In this subsection, we would like to convince the reader that the concept of Λ-mouse, while much more involved, behaves very similarly to the concept of a Σ-mouse where Σ is an iteration strategy.

In general, when introducing any notion of a mouse one has to keep in mind the procedures that allow us to build such mice. Formally speaking, many notions of Λ-mice might make perfect sense, but when we factor into it the constructions that are supposed to produce such mice we run into a key issue.

In any construction that produces some sort of mouse (e.g. K^c-constructions, fully backgrounded constructions, etc) there are stages where one has to consider certain kinds of Skolem hulls, or as inner model theorists call them fine structural cores. The reader can view these cores as some carefully defined Skolem hulls. To illustrate the aformentioned problem, imagine we do have some notion of Λ-mouse and let us try to run a construction that will produce such mice. Suppose \mathcal{T} is a tree according to Λ that appears in this construction. Having a notion of a Λ-mouse means that we have a prescription for deciding whether $\Lambda(\mathcal{T})$ should be indexed in the strategy predicate or not.

Suppose \mathcal{T} is a Λ-maximal tree. It is hard to see exactly what one can index so that the strategy predicate remembers that \mathcal{T} is maximal. And this “remembering” is the issue. Imagine that at a later stage we have a Skolem hull $\pi: \mathcal{M} \to \mathcal{N}$ of our current stage such that $\mathcal{T} \in \text{rng}(\pi)$. It is possible that $\mathcal{U} =_{\text{def}} \pi^{-1}(\mathcal{T})$ is Λ-short. If we have indexed X in our strategy that proves Λ-maximality of \mathcal{T} then $\pi^{-1}(X)$ now can no longer prove that \mathcal{U} is Λ-maximal. Thus, the notion of Λ-mouse cannot be first order.

The solution is simply not to index anything for Λ-maximal trees. This doesn’t quite solve the problem as the above situation implies that nothing should be indexed for many Λ-short trees as well. To solve this problem, we will only index the branches of some Λ-short trees, those that we can locally prove are Λ-short. We explain this below in more details.

Fix an lsu type hod premouse \mathcal{P} and let Λ be its short tree strategy. Let δ be the largest Woodin cardinal of \mathcal{P} and ν be the least $<\delta$-strong of \mathcal{P}. To explain the exact prescription that we use to index Λ, we explain some properties of the models that have already been constructed according to this indexing scheme. Suppose \mathcal{M} is a Λ-premouse.

Call $\mathcal{T} \in \mathcal{M}$ unambiguous if \mathcal{T} is obviously short. For instance, it can be that the $\#$-operator provides a \mathcal{Q}-structure and determines a branch c of \mathcal{T} such that
exists and \(Q(c, T) \) exists. Another way that a tree can be obviously short is that there could be a model \(Q \) in \(T \) such that \(\pi_{P,Q} : P \to Q \) is defined and the portion of \(T \) that comes after \(Q \) is based on \(Q^b \). Here \(Q^b \) is defined as \(Q \upharpoonright (\kappa^+)^Q \), where \(\kappa \) is the supremum of the Woodin cardinals below the largest Woodin of \(Q \).

The precise definition of an unambiguous tree is given in [39, Definition 3.3.1]. The reader should keep in mind that there is a formula \(\zeta \) in the language of \(\Lambda \)-premice such that for any \(\Lambda \)-premouse \(M \) and for any iteration tree \(T \in M \), \(T \) is unambiguous if and only if \(M \models \zeta[T] \).

Unfortunately there can be trees that are ambiguous. Suppose then \(T \) is an ambiguous tree. In this case whether we index \(\Lambda(T) \) or not depends on whether we can find a \(Q \)-structure that can be authenticated to be the correct one. There can be many ways to certify a \(Q \)-structure, and [39] provides one such method. An interested reader can consult clause 4 of [39, Definition 3.8.2]. Notice that because \(P \) has only one Woodin cardinal, not being able to find a \(Q \)-structure is equivalent to the tree being maximal. Thus, in a nutshell the solution proposed by [39] is that we index only branches that are given by internally authenticated \(Q \)-structures.

Suppose now that we have the above Skolem hull situation, namely that we have \(\pi : M \to N \) and \(T \) in \(N \) that is \(\Lambda \)-maximal but \(\pi^{-1}(T) \) is short. There is no more indexing problem. The reason is that in order to index \(\Lambda(\pi^{-1}(T)) \) in \(M \) we need to find an authenticated \(Q \)-structure for \(\pi^{-1}(T) \). The authentication process is first order, and so if \(N \) does not have such an authenticated \(Q \)-structure for \(T \) then \(M \) cannot have such an authenticated \(Q \)-structure for \(\pi^{-1}(T) \).

The reader of this paper does not need to know the exact way the authentication procedure works. However, the reader should keep in mind that the authentication procedure is internal to the mouse. More precisely, the following holds:

Internal Definability of Authentication: there is a formula \(\phi \) in the appropriate language such that whenever \((P, \Lambda) \) is as above and \(M \) is a \(\Lambda \)-mouse over some set \(X \) such that \(P \in X \), for any tree \(T \in M \) if \(M \models \phi[T] \) then \(T \in \text{dom}(\Lambda) \), \(T \) is short and \(\Lambda(T) \in M \).

We again note that the Internal Definability of Authentication (IDA) is only shown to be true for the minimal model of LSA. In general, IDA cannot be true as there can be short trees without \(Q \)-structures. The authors have recently discovered an-

\(^{33}\) \(M^T_c \) is a direct limit along the models of \(c \). \(Q(c, T) \) is the largest initial segment of \(M^T_c \) such that \(Q(c, T) \models \text{"}\delta(T) \text{ is a Woodin cardinal"} \). It is only defined provided that \(\delta(T) \) is not a Woodin cardinal for some function definable over \(M^T_c \).

\(^{34}\) These are trees that are not unambiguous.
other short tree indexing scheme that can work in all cases, but has some weaknesses compared to the one introduced in [39].

Using the notation in [39], recall that P^b is the “bottom part” of P, i.e $P^b = P|((\nu^+)^P$, where ν is the supremum of the Woodin cardinals below the top Woodin of P.

We now describe another key feature of the indexing scheme of [39] that is of importance here. We say Σ is a low level component of Λ if there is a tree T on P according to Λ such that π^T,b exists (T may be \emptyset) and for some $R \leq \pi^T,b(P^b)$, $\Sigma = \Lambda_R$. Let $LLC(\Lambda)$ be the set of Σ that are a low level components of Λ. What is shown in [39] is that Λ is determined by $LLC(\Lambda)$ in a strong sense.

Given a transitive model M of a fragment of ZFC such that $P \in M$ we say M is closed under $LLC(\Lambda)$ if whenever $T \in M$ is a tree according to Λ such that π^T,b exists, $\Lambda_{\pi^T,b(P^b)}$ has a universally Baire representation over M. More precisely, whenever $g \subseteq Coll(\omega, \pi^T,b(P^b))$ is M-generic, for every M-cardinal λ there are trees $T,S \in M[g]$ on λ such that $M[g] \models "(T,S) are < \lambda$-complementing" and for all $< \lambda$-generics h, $(p[T])^{M[g*h]} = Code(\Lambda_{\pi^T,b(P^b)}) \cap M[g*h]$. Here $Code(\Phi)$ is the set of reals coding Φ (with respect to a fixed coding of elements of HC by reals).

It is shown in [39] that if assuming AD^+, (M, Σ) is such that

1. M is a countable model of a fragment of ZFC,
2. M has a class of Woodin cardinals,
3. Σ is an ω_1-iteration strategy for M and
4. whenever $i: M \rightarrow N$ is an iteration via Σ, N is closed under $LLC(\Lambda)$,

there is a formula ψ such that whenever g is M-generic for any $T \in M[g]$,

$$T \text{ is according to } \Lambda \text{ if and only if } M[g] \models \psi[T]. \quad (\star)$$

The interested reader can consult Chapters 5, 6 and 8 of [39]. In particular, Chapter 8.2 is rather relevant.

The reason we explained the above is to give the reader some confidence that defining a short tree strategy Λ for a hod premose P is equivalent to describing the set $LLC(\Lambda)$. This fact is the reason that the indexing schema of [39] works in the following sense.

Note that in some cases, π^T,b may exist but π^T may not.

35 π^T,b is the restriction of the iteration embedding to P^b. See [39] for a more detailed definition.
Being able to define short-tree-strategy mice is one thing, proving that they are useful is another. Usually what needs to be shown are the following two key statements. We let ϕ_{sts} be the formula that is mentioned in the Internal Definability of Authentication.

The Eventual Authentication. Suppose (\mathcal{P}, Λ) is as above and \mathcal{M} is a sound Λ-mouse over some set X such that $\mathcal{P} \in X$ and \mathcal{M} projects to X. Suppose $\mathcal{T} \in \mathcal{M}$ is according to Λ and is Λ-short. Suppose further that $\mathcal{M} \models \neg \phi_{sts}[\mathcal{T}]$. Then there is a sound Λ-mouse \mathcal{N} over X such that $\mathcal{M} \trianglelefteq \mathcal{N}$ and $\mathcal{N} \models \phi_{sts}[\mathcal{T}]$.

Mouse Capturing for Λ: Suppose (\mathcal{P}, Λ) is as above. Then for any $x \in \mathbb{R}$ that codes \mathcal{P} and any $y \in \mathbb{R}$, y is ordinal definable from x and Λ if and only if there is a Λ-mouse \mathcal{M} over x such that $y \in \mathcal{M}$.

Both The Eventual Authentication and Mouse Capturing for Λ are proven in [39] (see [39, Theorem 6.1.15] and [39, Theorem 10.2.1]).

The next subsection discusses the \mathcal{Q}-structure authentication process mentioned above.

2.2 The authentication method

Suppose \mathcal{P} is an lsa type hod premouse. Recall from the previous subsections that this means that \mathcal{P} has a largest Woodin cardinal δ such that $\mathcal{P} = (\mathcal{P}|\delta)^#$ and the least $< \delta$-strong cardinal of \mathcal{P} is a limit of Woodin cardinals. We let $\delta^\mathcal{P}$ be the largest Woodin cardinal of \mathcal{P} and $\kappa^\mathcal{P}$ be the least $< \delta^\mathcal{P}$-strong cardinal of \mathcal{P}. We shall also require that \mathcal{P} is *tame*, meaning that for any $\nu < \delta^\mathcal{P}$, if $(\mathcal{P}|\nu)^#$ is of lsa type and $\mathcal{M} \trianglelefteq \mathcal{P}$ is the largest such that $\mathcal{M} \models \text{"} \nu \text{ is a Woodin cardinal"}$ then ν is not overlapped in \mathcal{M}\(^{36}\).

Our goal here is to explain the \mathcal{Q}-structure authentication procedure employed by [39]. Recall our discussion of ambiguous and unambiguous trees. The \mathcal{Q}-structure authentication procedure applies to only ambiguous trees, trees that are not obviously short.

[39, Chapters 3.6-3.8] develop the aforementioned authentication procedure. [39, Definition 3.8.2] introduces a hierarchy of possible \mathcal{Q}-structures. The hierarchy is indexed by ordinals and naturally, it is defined by induction. For illustrative purposes we call γth level of the hierarchy sts_γ. Thus, $sts_\gamma(\mathcal{P})$ is the set of all sts premice

\(^{36}\)This means that if $E \in \vec{E}^\mathcal{M}$ then $\nu \notin (\text{crit}(E), \text{index}(E))$.

25
that are based on \(\mathcal{P} \) (i.e., their short tree strategy predicate describes a short tree strategy for \(\mathcal{P} \)) and have rank \(\leq \gamma \).

To begin the induction, we let \(\text{sts}_0(\mathcal{P}) \) be the set of all sts premice that do not index a branch for any ambiguous tree. More precisely, if \(\mathcal{M} \in \text{sts}_0(\mathcal{P}) \) and \(\mathcal{T} \in \text{dom}(S^M) \) then if \(S^M(\mathcal{T}) \) is defined then \(\mathcal{T} \) is unambiguous.

Given \(\text{sts}_\alpha(\mathcal{P}) \) we let \(\text{sts}_{\alpha+1}(\mathcal{P}) \) be the set of all sts premice that index branches of those ambiguous trees with a \(Q \)-structure in \(\text{sts}_\alpha(\mathcal{P}) \). More precisely, suppose \(\mathcal{M} \in \text{sts}_{\alpha+1}(\mathcal{P}) \) and \(\mathcal{T} \in \text{dom}(S^M) \) and \(S^M(\mathcal{T}) \) is defined. Then either

1. \(\mathcal{T} \) is unambiguous or

2. \(\mathcal{T} \) is ambiguous and there is \(Q \in \mathcal{M} \) such that \(\mathcal{M} \models “Q \in \text{sts}_\alpha(\mathcal{P})”, (\mathcal{M}(\mathcal{T}))^\# \leq Q \), \(Q \models “\delta(\mathcal{T}) \text{ is a Woodin cardinal}” \) but \(\delta(\mathcal{T}) \) is not a Woodin cardinal with respect to some function definable over \(Q \)37 and there is a cofinal branch \(b \) of \(\mathcal{T} \) such that \(Q \models \mathcal{M}^b \).

When \(Q \) exhibits the properties listed in clause 2 we say that \(Q \) is a \(Q \)-structure for \(\mathcal{T} \). It follows from the zipper argument of [24, Theorem 2.2] that for each \(Q \)-structure \(Q \) there is at most one branch \(b \) with properties described in clause 2 above. However, there is nothing that we have said so far that guarantees the uniqueness of the \(Q \)-structure itself. The uniqueness is usually a consequence of iterability and comparison (see [55, Theorem 3.11])38. Thus, to make the definition of \(\text{sts}_{\alpha+1} \) complete, we need to impose an iterability condition on \(Q \).

The exact iterability condition that one needs is stated as clause 4 of [39, Definition 3.8.2]. This clause may seem technical, but there are good reasons for it. For the purposes of identifying a unique branch \(b \) saying that \(Q \) in clause 2 is sufficiently iterable in \(\mathcal{M} \) would have sufficed. However, recall the statement of the Internal Definability of Authentication. The problem is that when we require that an \(\mathcal{M} \) as above is a \(\Lambda \)-premouse we in addition must say that the branch \(b \) that the \(Q \)-structure \(Q \) defines is the exact same branch that \(\Lambda \) picks. To guarantee this, we need to impose a condition on \(Q \) such that \(Q \) will be iterable not just in \(\mathcal{M} \) but in \(V \). The easiest way of doing this is to say that \(Q \) has an iteration strategy in some derived model as then, using genericity iterations (see [55, Chapter 7.2]), we can extend such a strategy for \(Q \) to a strategy that acts on iterations in \(V \).

For limit \(\alpha \), \(\text{sts}_\alpha(\mathcal{P}) \) is essentially \(\bigcup_{\beta<\alpha} \text{sts}_\beta(\mathcal{P}) \). What has been left unexplained is the kind of strategy that the \(Q \)-structure \(Q \) must have in some derived model. Let

37This can be written as \(\mathcal{J}_1(\mathcal{Q}) \models “\delta(\mathcal{T}) \text{ is not a Woodin cardinal}” \).

38In general, the theory of \(Q \)-structures doesn’t have much to do with sts mice. It will help if the reader develops some understanding of [55, Chapter 6.2 and Definition 6.11].
\(\Sigma\) be this strategy. If \(M \in \text{sts}_\alpha(\mathcal{P})\) is a \(\Lambda\)-mouse then \(Q\) must be \(\Lambda_{(\mathcal{M}(\mathcal{T}))^\#}\)-mouse over \((\mathcal{M}(\mathcal{T}))^\#\). Thus, our next challenge is to find a first order way of guaranteeing that \(\Sigma\)-iterates of \(Q\) are \(\Lambda_{(\mathcal{M}(\mathcal{T}))^\#}\)-mice, even those iterates that we will obtain after blowing up \(\Sigma\) via genericity iterations.

The solution that is employed in [39] is that if \(R\) is a \(\Sigma\)-iterate of \(Q\) and \(U \in \text{dom}(S^R)\) then \(U\) must be \(\Lambda(\mathcal{M}(\mathcal{T}))^\#\)-mouse over \((\mathcal{M}(\mathcal{T}))^\#\). Thus, our next challenge is to find a first order way of guaranteeing that \(\Sigma\)-iterates of \(Q\) are \(\Lambda(\mathcal{M}(\mathcal{T}))^\#\)-mice, even those iterates that we will obtain after blowing up \(\Sigma\) via genericity iterations.

The indexing scheme of [39] does not index all trees in \(\mathcal{P}\). In other words, \(S^M\) is never total. \(S^M = (\mathcal{M}(\mathcal{T}))^\#\). One requirement is that \(\mathcal{N}\) also iterates to one such background construction to which \(\mathcal{P}\) also iterates. Let \(\mathcal{S}\) be this common background construction and suppose \(\alpha + 1 < lh(U)\) is such that \(\alpha\) is a limit ordinal.

First assume \(U \upharpoonright \alpha\) is unambiguous. What is shown in [39] is that knowing the branch of \(P\)-to-\(S\) tree there is a first order procedure that identifies the branch of \(U \upharpoonright \alpha\), and that procedure is the tree certification procedure applied to \(U \upharpoonright \alpha\).

Suppose next that \(U \upharpoonright \alpha\) is ambiguous. Then because \(\alpha + 1 < lh(U)\), \(U \upharpoonright \alpha\) must be short and the branch chosen for it in \(Q\) must have a \(Q\)-structure \(Q_1\) which is itself an \(\text{sts}\) mouse. We have that \(Q_1 \in Q\) and \(Q_1\) must have the same certification in \(Q\) that \(Q\) has in \(M\). Again, the unambiguous trees in \(Q_1\) have a tree certification in \(Q\) according to the above procedure. The ambiguous ones produce another \(Q_2 \in Q_1\). Because we cannot have an infinite descent, the definition of tree certification is meaningful.

Remark 2.1 It is sometimes convenient to think of a short tree strategy as one having two components, the branch component and the model component. The branch part and the second as the model part. Given a short tree strategy \(\Lambda\) we let \(b(\Lambda)\) be the set of those trees \(T \in \text{dom}(\Lambda)\) such that \(\Lambda(T)\) is a branch of \(T\), and we let \(m(\Lambda)\) be the set of those trees \(T \in \text{dom}(\Lambda)\) such that \(\Lambda(T)\) is a model.

The convention adopted in this paper is that if \(T \in m(\Lambda)\) then \(\Lambda(T) = \mathcal{M}(\mathcal{T})^\#\). Thus, if \(M\) is an \(\text{sts}\) premouse then \(S^M\) is a short tree strategy in the above sense, i.e., for \(T \not\in b(S^M)\), \(S^M(T)\) is simply left undefined.

This ends our discussion of \(\text{sts}\) premice. Of course, a lot has been left out and the mathematical details are unfortunately excruciating, but we hope that the reader has gained some level of intuition to proceed with the paper.

In the next subsection we will deal with one of the most important aspects of hod mice, namely the generic interpretability of iteration strategies.
2.3 Generic interpretability

There are several situations when one has to be careful when discussing sts premise and \(\Lambda \)-premise in general. First, for an iteration strategy \(\Sigma, \mathcal{M}_1^{\#,\Sigma} \) makes complete sense. It is the minimal active \(\Sigma \)-mouse with a Woodin cardinal. For short tree strategy \(\Lambda \) the situation is somewhat different. The expression “\(\mathcal{M}_1^{\#,\Lambda} \) is the minimal active \(\Lambda \)-mouse with a Woodin cardinal” doesn’t say much as we do not say how closed \(\mathcal{M}_1^{\#,\Lambda} \) must be. One must also add statements of the form “in which all \(\Lambda \)-short trees are indexed”. This is because it could be that \(\Lambda \)-premouse \(\mathcal{M} \) is active and has a Woodin cardinal but there is a \(\Lambda \)-short tree \(T \in \mathcal{M} \) that has not yet been indexed in \(\mathcal{M} \) (see The Eventual Certification above). In particular, without extra assumptions, it may be the case that given a \(\Lambda \)-sts mouse \(\mathcal{M} \models \text{ZFC}, \Lambda \upharpoonright \mathcal{M} \) is not definable over \(\mathcal{M} \). Clearly such definability holds for many strategy mice.

The above issue becomes somewhat of a problem when dealing with generic interpretability, which is the statement that the internal strategy predicate can be uniquely extended onto generic extensions. For ordinary strategy mice, generic interpretability is in general easier to prove. For short tree strategy mice the situation is somewhat parallel to the above anomaly. Suppose \(\mathcal{M} \) is a \(\Lambda \)-mouse where \(\Lambda \) is a short tree strategy and suppose \(g \) is \(\mathcal{M} \)-generic. In general, we cannot hope to prove that \(\Lambda \upharpoonright \mathcal{M}[g] \) is definable over \(\mathcal{M}[g] \). In this subsection, we introduce some properties of short tree strategies that allow us to prove generic interpretability, albeit in a somewhat weaker sense.

The most important concept that is behind most arguments of [39] is the concept of branch condensation (see [39, Definition 3.3.8]). It is very possible that the concept of full normalization introduced in [57] can be used instead of branch condensation to obtain a greater generality. In fact, the authors have recently discovered a new notion of a short-tree-strategy mouse utilizing full normalization.

Branch condensation implies generic interpretability. The following is our generic interpretability theorem which is essentially [39, Theorem 6.1.5]. The aforementioned theorem is stated for strategies with branch condensation that are associated with a pointclass \(\Gamma \). Here, we need strategies whose association with pointclasses is a consequence of some abstract properties that it has, not something explicitly assumed about them. Such strategies can be obtained working inside a model of determinacy. The specific properties that we need are following properties:

1. hull condensation,
2. strong branch condensation,
3. branch condensation for pull-backs.
The meaning of clause 3 above is as follows. Suppose \((P, \Lambda)\) is an sts hod pair. \(\Lambda\) has branch condensation for pullbacks if whenever \(\pi : Q \to P\) is elementary, \(\pi\)-pullback of \(\Lambda\) has branch condensation. The following list is the list of relevant definitions and theorems that interested reader should consult in order to understand how one constructs strategies with the 3 properties mentioned above: [39, Definition 3.3.3, Definition 4.7.1, Theorem 5.4.7, Theorem 10.1.1].

Definition 2.2 We say that a short tree strategy is splendid if it satisfies the above 3 properties.

Clause 3 above implies that the pullback of splendid strategies are splendid\(^{39}\). It might help to consult Remark 2.1 before reading the next theorem.

Theorem 2.3 Suppose \(\mathcal{P}\) is an lsa type hod premouse and \(\Lambda\) is a splendid short tree strategy for \(\mathcal{P}\). Suppose \(\mathcal{N}\) is a \(\Lambda\)-premouse satisfying ZFC and that \(\mathcal{N}\) has unboundedly many Woodin cardinals. Then for any \(\mathcal{N}\)-generic \(g\), \(\Psi =_{def} S^\mathcal{N}\) has a unique extension \(\Psi^g \subseteq \mathcal{N}[g]\) that is definable from \(\Psi\) over \(\mathcal{N}[g]\) and \(b(\Psi^g) \subseteq b(\Lambda) \upharpoonright \mathcal{N}[g]\).

Our Theorem 2.3 is weaker than [39, Theorem 6.1.5]. The conclusion of the aforementioned theorem is that \(\Psi^g = \Lambda \upharpoonright \mathcal{N}[g]\). However, in [39, Theorem 6.1.5] \(\mathcal{N}\) satisfies a strong iterability hypothesis. Without this iterability hypothesis, \(b(\Psi^g) \subseteq b(\Lambda) \upharpoonright \mathcal{N}[g]\) is all the proof of [39, Theorem 6.1.5] gives.

In the next subsection we will introduce a type of short tree strategy mouse that we will use to establish Theorem 1.4.

2.4 Excellent hod premice

Our proof of Theorem 1.4 is an example of how one can translate set theoretic strength from one set of principles to another set of principles by using inner model theoretic objects as intermediaries. Below we introduce the notion of an excellent hybrid premouse. We will then use this notion to show that both Sealing and LSA – over – uB hold in a generic extension of an excellent hybrid premouse. Conversely, we will show that in any model of either Sealing or LSA – over – uB there is an excellent hybrid premouse. We start by introducing some terminology and then introduce the excellent hybrid premouse.

39Simply because “being a pullback” is a transitive property.
Remark 2.4 Below and elsewhere, when discussing iterability we usually mean with respect to the extender sequence of the structures in consideration. Sometimes our definitions will be stated with no reference to such an extender sequence, but these definitions will always be applied in contexts where there is a distinguished extender sequence.

To state our generic interpretability results we need to introduce a form of self-iterability, namely window-based self-iterability. We say that $[\nu, \delta]$ is a window if there are no Woodin cardinals in the interval (ν, δ). Given a window w, we let ν^w and δ^w be such that $w = [\nu^w, \delta^w]$. We say that window w is above κ if $\nu^w \geq \kappa$. We say that window w is not overlapped if there is no ν^w-strong cardinal. We say w is maximal if $\nu^w = \sup\{\alpha + 1 : \alpha < \nu^w \text{ is a Woodin cardinal}\}$ and δ^w is a Woodin cardinal.

Window-Based Self-Iterability. Suppose κ is a cardinal. We say WBSI holds at κ if for any window w that is above κ and for any successor cardinal $\eta \in (\nu^w, \delta^w)$, setting $Q = H_{\eta^+}$, Q has an Ord-iteration strategy Σ which acts on iterations that only use extenders with critical points $> \nu^w$.

One usually says that Q is Ord-iterable above ν^w to mean exactly what is written above.

Definition 2.5 We let T_0 be the conjunction of the following statements.

1. ZFC,

2. There are unboundedly many Woodin cardinals.

3. The class of measurable cardinals is stationary.

4. No measurable cardinal that is a limit of Woodin cardinals carries a normal ultrafilter concentrating on the set of measurable cardinals.

When we write $M \models T_0$ and M has a distinguished extender sequence then we make the tacit assumption that clause 5 is witnessed by extenders on the sequence of M.

Definition 2.6 Suppose \mathcal{P} is hybrid premouse. We say that \mathcal{P} is almost excellent if

1. $\mathcal{P} \models T_0$.

30
2. There is a Woodin cardinal δ of \mathcal{P} such that $\mathcal{P} \models "\mathcal{P}_{0} =_{def} (\mathcal{P}|\delta)^\# \text{ is a hod premouse of lsa type}"$, \mathcal{P} is an sts premouse based on \mathcal{P}_{0} and $\mathcal{P} \models "\mathcal{S}^\mathcal{P}, \text{ which is a short tree strategy for } \mathcal{P}_{0}, \text{ is splendid}"$.

3. Given any $\tau < \delta_{\mathcal{P}_{0}}$ such that $(\mathcal{P}_{0}|\tau)^\#$ is of lsa type, there is $\mathcal{M} \subseteq \mathcal{P}$ such that τ is a cutpoint of \mathcal{M} and $\mathcal{M} \models "\tau \text{ is not a Woodin cardinal}"$.

We say that \mathcal{P} is excellent if in addition to the above clauses, \mathcal{P} satisfies:

4. Letting δ be as above, $\mathcal{P} \models \text{WBSI holds at } \delta$.

If \mathcal{P} is excellent then we let $\delta^{\mathcal{P}}$ be the δ of clause 2 above and $\mathcal{P}_{0} = ((\mathcal{P}|\delta^{\mathcal{P}})^\#)^\mathcal{P}$.

Remark 2.7 In the previous subsection, we were mainly concerned with the structure of hod mice associated with the minimal model of LSA. An excellent hybrid premouse is beyond the minimal model of LSA. Indeed, the arguments used in the proofs of [39, Lemma 8.1.10 and Theorem 8.2.6] apply to show that if \mathcal{P} is excellent and $\lambda > \delta^{\mathcal{P}}$ is a limit of Woodin cardinals of \mathcal{P} then the (new) derived model at λ is a model of LSA. It follows from a standard Skolem hull argument and the derived model theorem that there is $A \in \mathcal{P}(\mathbb{R}) \cap \mathcal{P}$ such that $L(A, \mathbb{R}) \models \text{LSA}$.

Nevertheless, everything that we have said in the previous subsection about short tree strategy and sts mice carries over to the level of excellent hybrid mice. The methods of [39] work through the tame hod mice. The authors recently have discovered a new sts indexing scheme that works for arbitrary hod mice. This work is not relevant to the current work as the indexing of [39] just carries over verbatim.

For the rest of this paper we assume the following minimality hypothesis $\neg (\dagger)$, where

(\dagger): In some generic extension there is a (possibly class-sized) excellent hybrid premouse.

We will periodically remind the reader of this. One consequence of this assumption is the following fact, which roughly says that all local non-Woodin cardinals of a hod premouse (or hybrid premouse) are witnessed by \mathcal{Q}-structures which are initial segments of the model and are tame. It also shows that if \mathcal{P} is a hod mouse such that there is an lsa initial segment \mathcal{P}_{0} of \mathcal{P} and there is a Woodin cardinal $\delta > 0(\mathcal{P}_{0})$ inside \mathcal{P}, then we can construct an excellent hybrid premouse in \mathcal{P} by essentially performing a fully backgrounded sts construction in $\mathcal{P}|\delta$ above \mathcal{P}_{0} (with respect to the short-tree component of \mathcal{P}_{0}).

\footnote{A non-tame hod premouse is one that has an extender overlapping a Woodin cardinal.}
Proposition 2.8 \(^{(\neg \dagger)}\) Suppose \(\mathcal{P}\) is a hod premouse. Let \(\kappa\) be a measurable limit of Woodin cardinals of \(\mathcal{P}\) and let \(\xi \leq \sigma^\mathcal{P}(\kappa)\). Suppose \((\mathcal{P}|\xi)^\sharp \models \text{“}\xi\text{ is a Woodin cardinal”}\) but either \(\xi\) is not the largest Woodin cardinal of \(\mathcal{P}\) or \(\xi < \sigma^\mathcal{P}(\kappa)\). Then there is \(\mathcal{M} \leq \mathcal{P}\) such that \(\xi\) is a cutpoint in \(\mathcal{M}\), \(\rho(\mathcal{M}) \leq \xi\) and \(\mathcal{M} \models \text{“}\xi\text{ is not a Woodin cardinal”}\).

Proof. Towards a contradiction assume that there is no such \(\mathcal{M}\). Suppose first \(\xi\) is a Woodin cardinal of \(\mathcal{P}\). It must then be a cutpoint cardinal as otherwise we easily get an excellent hybrid premouse by performing a fully backgrounded construction inside \(\mathcal{P}|\kappa\) with respect to the short-tree component of \(\mathcal{P}_0\), where \(\mathcal{P}_0\) is an lsa hod initial segment of \(\mathcal{P}|\kappa\). The existence of \(\mathcal{P}_0\) follows from the fact that \((\mathcal{P}|\xi)^\sharp\) is an lsa initial segment of \(\mathcal{P}\) and \(\xi < \sigma^\mathcal{P}(\kappa)\).

It then follows that there is a Woodin cardinal \(\zeta\) of \(\mathcal{P}\) above \(\xi\). Now we can use [39, Lemma 8.1.4] to build an excellent hybrid premouse via a backgrounded construction of \(\mathcal{P}|\zeta\) as above (with respect to the short-tree component of \((\mathcal{P}|\xi)^\sharp\)).

Suppose next that \(\xi\) is not a Woodin cardinal. It follows that \(\xi < \sigma^\mathcal{P}(\kappa)\). We can now repeat the above steps in \(\text{Ult}(\mathcal{P}, E)\) where \(E\) is the least extender overlapping \(\xi\).

There are a few important facts that we will need about excellent hybrid premice that one can prove by using more or less standard ideas, and that are in one form or another have appeared in [39]. We will use the next subsection recording some of these facts.

2.5 More on self-iterability

Here we prove that window based strategy acts on the entire model. The main theorem that we would like to prove is the following.

Theorem 2.9 Suppose \(\mathcal{P}\) is an excellent hybrid premouse, \(w\) is a maximal window of \(\mathcal{P}\) above \(\delta^\mathcal{P}\) and \(\eta \in [\nu^w, \delta^w)\) is a regular cardinal. Let \(\Sigma\) be the Ord-strategy of \(\mathcal{Q} = \mathcal{P}|\eta\) that acts on iterations that are above \(\nu^w\). Let \(g\) be \(\mathcal{P}\)-generic. Then \(\Sigma\) has a unique extension \(\Sigma^g\) definable over \(\mathcal{P}[g]\) such that in \(\mathcal{P}[g]\), \(\Sigma^g\) is an Ord-iteration strategy for \(\mathcal{P}\) that acts on iterations that are based on \(\mathcal{Q}\) and are above \(\nu^w\).

The proof will be presented as a sequence of lemmas. First we make a few observations. Suppose \(\mathcal{P}\) is excellent and for some \(\mathcal{P}\)-cardinal \(\xi > \delta^\mathcal{P}\), \(\pi : \mathcal{N} \to \mathcal{P}|\xi\) is an elementary embedding in \(\mathcal{P}\) such that \(\mathcal{N}\) is countable. It follows that \(\eta =_{def} \sup(\pi[\delta^\mathcal{N}]) < \delta^\mathcal{P}\), and therefore, letting \(\Lambda = (\pi\text{-pullback of } S^\mathcal{P})\),

32
(O1) $\mathcal{P} \models \text{"Λ is a splendid Ord-strategy for \mathcal{N}_0"},
(O2) $\mathcal{P} \models \text{"\mathcal{N} is a Λ^{ste}-premouse"},
(O3) in \mathcal{P}, Theorem 2.3 applies to \mathcal{N} and Λ.
(O4) if $i : \mathcal{N} \rightarrow \mathcal{N}_1$ is such that $\text{crit}(i) > \delta_{\mathcal{N}}$, and for some $\sigma : \mathcal{N}_1 \rightarrow \mathcal{P}|\xi$, $\pi = \sigma \circ i$, then \mathcal{N}_1 is a Λ^{ste}-premouse.

(O4) will be key in many arguments in this paper, but often we will ignore stating it for the sake of succinctness. In each case, however, the reader can easily find the realizable embeddings. The reason (O4) is important is that without it we cannot really prove any self-iterability results, as if iterating \mathcal{N} above destroyed the fact that the resulting premouse is a Λ^{ste}-premouse then we couldn’t find the relevant \mathcal{Q}-structures using Λ or comparison techniques.

Lemma 2.10 Suppose \mathcal{P} is an excellent hybrid premouse, w is a maximal window of \mathcal{P} above $\delta_{\mathcal{P}}$ and $\eta \in [\nu^w, \delta_{\mathcal{P}})$ is a regular cardinal. Let Σ be the Ord-strategy of $\mathcal{Q} = \mathcal{P}|\eta$ that acts on iterations that are above ν^w. Then Σ is an Ord-iteration strategy for \mathcal{P} that acts on iterations that are based on \mathcal{Q} and are above ν^w.

Proof. We work in $V = \mathcal{P}$. Suppose T is an iteration tree on \mathcal{Q} according to Σ. We can then naturally regard T as a tree on \mathcal{P}. We claim that all the models of this tree are well-founded. Towards a contradiction assume not. Fix an inaccessible $\xi > \delta^w$ such that when regarding T as a tree on $\mathcal{P}|\xi$, some model of it is ill-founded. Let T^+ be the result of applying T to $\mathcal{P}|\xi$, and let $\pi : \mathcal{M} \rightarrow \mathcal{P}|\xi$ be such that

1. $\omega, T^+ \in \text{rng}(\pi),$
2. $|\mathcal{M}| = \eta,$ and
3. $\text{crit}(\pi) > \eta.$

Let $U = \pi^{-1}(T)$ and $U^+ = \pi^{-1}(T^+)$. We thus have that some model of U^+ is ill-founded.

Let $\mathcal{R} = \mathcal{P}|\eta^+$ and let U^R be the result of applying U to \mathcal{R}. Because \mathcal{P} has no Woodin cardinals in the interval (ν^w, η^+), we have that U^R is according to any Ord-strategy of \mathcal{R}. Thus U^R only has well-founded models. It is not hard to show, however, that for each $\alpha < \text{lh}(U)$, if $[0, \alpha]_U \cap D^U = \emptyset$ then there is an elementary embedding $\sigma_\alpha : \mathcal{M}^{U^+_\alpha} \rightarrow \mathcal{P}^{\mathcal{R}_{\alpha}}(\mathcal{M})$. In the case $[0, \alpha]_U \cap D^U \neq \emptyset$, $\mathcal{M}^{U^+_\alpha} = \mathcal{M}^{U^+_\alpha} = \mathcal{M}^{U^R}_{\alpha}$.

In fact more is true.
Lemma 2.11 Suppose \(P \) is an excellent hybrid premouse, \(w \) is a maximal window of \(P \) above \(\delta^P \) and \(\eta \in [\nu^w, \delta^P) \) is a regular cardinal. Let \(\Sigma \) be the \(\text{Ord} \)-strategy of \(Q = P\mid \eta \) that acts on iterations that are above \(\nu^w \). Let \(\mathbb{P} \in P \) be a poset and \(g \subseteq \mathbb{P} \) be \(P \)-generic. Then \(\Sigma \) has a unique extension \(\Sigma^g \) definable over \(P[g] \) such that in \(P[g] \), \(\Sigma^g \) is an \(\text{Ord} \)-iteration strategy for \(Q \) acting on iterations that are above \(\nu^w \).

Proof. The proof is by now a standard argument in descriptive inner model theory. It has appeared in several publications. For example, the reader can consult the proof of [33, Lemma 3.9 and Theorem 3.10] or [36, Proposition 1.4-1.7]. We will only give an outline of the proof.

Fix \(\zeta \) such that \(P \in P\mid \zeta \). Fix now a maximal window \(v \) such that \(\nu^v > \zeta \). Let \((\mathcal{M}_\xi, \mathcal{N}_\xi : \xi < \Omega) \) be the output of the fully background \(S^P \)-construction done over \(P\mid \nu^u \) with critical point \(> \nu^v \). Because \(\Sigma \) is an \(\text{Ord} \)-strategy, we must have a \(\xi < \Omega \) such that \(\mathcal{N}_\xi \) is a normal iterate of \(Q \) via an iteration \(T \) that is according to \(\Sigma \) and is such that the iteration embedding \(\pi_T : Q \rightarrow \mathcal{N}_\xi \) is defined.\(^{41}\)

Assume now that we have determined that the iteration \(U \in P\mid \nu^v[g] \) is according to \(\Sigma^g \) and has limit length. For simplicity, let us assume \(U \) has no drops. We want to describe \(\Sigma^g(U) \). Set \(\Sigma^g(U) = b \) if and only if there is \(\sigma : \mathcal{M}^U_b \rightarrow \mathcal{N}_\xi \) such that \(\pi_T = \sigma \circ \pi_U^b \). To show that this works, we need to show that there is a unique branch \(b \) with the desired property. Such a branch \(b \) is called \(\pi_T \)-realizable.

Towards a contradiction, assume that either there is no such branch or there are two. Let \(\lambda = (\delta^u)^+ \). Let now \(\pi : \mathcal{N} \rightarrow P\mid \lambda \) be a pointwise definable countable hull of \(P\mid \lambda \). It follows that we can find a maximal window \(u \) of \(\mathcal{N} \), an \(\mathcal{N} \)-regular cardinal \(\zeta \in (\nu^u, \delta^u) \), a partial ordering \(Q \in \mathcal{N} \) and a maximal window \(z \) of \(\mathcal{N} \) such that

1. \(Q \in \mathcal{N}\mid \nu^z \);

2. for some \(W \) that is a model appearing in the fully backgrounded construction of \(\mathcal{N}\mid \delta^u \) done over \(\mathcal{N}\mid \nu^u \) with respect to \(S^\mathcal{N} \) using extenders with critical points \(> \nu^z \), there is an iteration \(K \in \mathcal{N} \) on \(\mathcal{R} = \text{def} \mathcal{N} \mid \zeta \) with last model \(W \) such that \(\pi^K \) is defined,

3. some condition \(q \in Q \) forces that whenever \(h \subseteq Q \) is \(\mathcal{N} \)-generic, there is an iteration \(X \in (\mathcal{N}\mid \nu^z)[h] \) with no drops such that either there is no \(\pi^K \)-realizable branch or there are at least two \(\pi^K \)-realizable branches.

Let \(h \in P \) be \(\mathcal{N} \)-generic for \(Q \). Let \(X \in (\mathcal{N}\mid \nu^z)[h] \) be as in clause 3 above. Because \(\pi(\mathcal{R}) \) is fully iterable in \(P \) above \(\pi(\nu^u) \), we have that \(\mathcal{R} \) is fully iterable in \(P \) above

\(^{41}\)I.e., \([0, lh(\mathcal{T}) - 1]_T \cap D^T = \emptyset \) the final model iteration doesn’t drop.
\(\nu^u \). Let \(b \) be the branch of \(\mathcal{X} \) according to the strategy of \(\mathcal{R} \) that is obtained as the \(\pi \)-pullback of the strategy of \(\pi(\mathcal{R}) \) (recall that \(\pi(\mathcal{R}) \) is iterable as a \(S^P \)-mouse).

Because \(\mathcal{R} \) has no Woodin cardinals, we have a largest \(\mathcal{S} \) such that \(\mathcal{S} \models \delta(\mathcal{X}) \) is not a Woodin cardinal” but \(rud(\mathcal{S}) \models \delta^X \) is not a Woodin cardinal”.

We claim that

Claim. \(\mathcal{S} \in \mathcal{N}[h] \).

Proof. To see this, as \(\mathcal{N} \) is closed under \(\# \), we can assume that \(\mathcal{M}(\mathcal{X}) \# \models \delta(\mathcal{X}) \) is a Woodin cardinal”. Let \(\mathcal{V} = \mathcal{M}(\mathcal{X}) \# \). We now compare \(\mathcal{V} \) with the construction producing \(\mathcal{W} \). As \(\mathcal{W} \) has no Woodin cardinals, we get that there are models \(\mathcal{V}^* \) appearing on the construction producing \(\mathcal{W} \), a tree \(\mathcal{Y} \) on \(\mathcal{V} \) and a branch \(c \) of \(\mathcal{Y} \) such that \(\mathcal{V}^* = \mathcal{M}_Y c \) and \(\mathcal{V}^* \) is the least model appearing on the construction producing \(\mathcal{W} \) such that \(\mathcal{V}^* \models \pi^Y(\delta(\mathcal{X})) \) is a Woodin cardinal” but \(rud(\mathcal{V}^*) \models \delta^X \) is not a Woodin cardinal”. It follows that \(\mathcal{S} = \text{Hull}_{\mathcal{V}^*}^{\mathcal{V}}(\{p\} \cup \text{rng}(\pi^Y_Y)) \) where \(n \) is the fine structural level at which a counterexample to Woodiness of \(\delta(\mathcal{X}) \) can be defined over \(\mathcal{S} \) and \(p \) is the \(n \)-th standard parameter of \(\mathcal{V}^* \). Because \(\mathcal{V}^* \), \(\mathcal{Y}, c \in \mathcal{N}[h] \), we have that \(\mathcal{S} \in \mathcal{N}[h] \). \[\Box \]

Putting the proofs of Lemma 2.10 and Lemma 2.11 together we obtain the proof of Theorem 2.9.

The proof of Theorem 2.9.

We outline the proof. Let \(\xi \) be \(\mathcal{P} \)-inaccessible limit of \(\mathcal{P} \)-Woodin cardinals and such that \(\mathcal{P} \in \mathcal{P}\xi \), and let \(\pi : \mathcal{N} \to \mathcal{P}\xi \) be such that \(|\mathcal{N}| = \eta, \text{crit}(\pi) > \eta \) and \(\mathcal{P} \in \text{rng}(\pi) \). Let \(\mathcal{Q} = \pi^{-1}(\mathcal{P}) \). Let \(h \) be \(\mathcal{P} \)-generic for \(\mathcal{Q} \). Notice now that Lemma 2.11 applies both in \(\mathcal{N}[h] \) and \(\mathcal{P}[h] \). Moreover, the proof of Lemma 2.11 shows that

1. \((\Sigma^h)^{\mathcal{P}[h]} \upharpoonright (\mathcal{N}[h]) = (\Sigma^h)^{\mathcal{N}[h]} \).
To see (1), notice that as Q has no Woodin cardinals, both $(\Sigma^h)^{P[h]}$ and $(\Sigma^h)^{N[h]}$ are guided by Q-structures. To see that (1) holds we need to show that both $(\Sigma^h)^{P[h]}$ and $(\Sigma^h)^{N[h]}$ pick the same Q-structures, and this would follow if we show that the Q-structures picked by $(\Sigma^h)^{N[h]}$ are iterable in $P[h]$. To see this, we have to recall our definition of $(\Sigma^h)^{N[h]}$. The iterability of any Q-structure picked by $(\Sigma^h)^{N[h]}$ is reduced to iterability of N in some non-maximal window u^N. The iterability of this window is reduced to the iterability of P in some non-maximal window $\pi(u^N)$, according to Lemma 2.11 this last iterability holds.

Finally notice that if we let $Q^+ = P(\eta^+)^P$ and Λ^h be the strategy of Q^+ given by Lemma 2.11, $\Lambda^h_Q = \Sigma^h$ (again this is simply because they both are Q-structure guided strategies). It now just remains to repeat the argument from Lemma 2.10. Given any tree $T \in N[h]$ according to Σ^h such that π_T exists, π_T can be applied to Q^+ and hence, to N. This finishes the proof of Theorem 2.9.

2.6 Iterability of countable hulls.

Here we would like to prove that countable hulls of an excellent hybrid premouse have iteration strategies. The reason for doing this is to show that if P is an excellent hybrid premouse and g is P-generic then any universally Baire set A in $P[g]$ is reducible to some iteration strategy which is Wadge below S^P. We will use this to show that Sealing holds in a generic extension of an excellent hybrid premouse (see Theorem 3.1).

Proposition 2.12 Suppose P is an excellent hybrid premouse and $(w_i : i < \omega)$ are infinitely many consecutive windows of P. Set $\xi = \sup_{i<\omega} \delta^{w_i}$. Suppose $P \in P[\nu^{w_0}]$ is a poset and $g \subseteq P$ is P-generic. Working in $P[g]$, let $\pi : N \to P[(\xi^+)^P[g]$ be a countable transitive hull. Then in $P[g]$, N has a ν^{w_0}-strategy Σ that acts on non-dropping trees that are based on the interval $[\pi^{-1}(\nu^{w_0}), \pi^{-1}(\xi)]$.

Proof. Set $u_i = \pi^{-1}(w_i)$ and $\zeta = \pi^{-1}(\xi)$. Our intention is to lift trees from N to P and use P’s strategy. However, as P-moves, we lose Theorem 2.9, it is now only applicable inside the iterate of P. To deal with this issue we will use Neeman’s “realizable maps are generic” theorem (see [30, Theorem 4.9.1]). That it applies is a consequence of the fact that the strategy of P we have described in Theorem 2.9 is unique, thus the lift up trees from N to P pick unique branches (this is a consequence of Steel’s result that UBH holds in mice, see [53, Theorem 3.3], but can also be proved using methods of Theorem 2.9). One last wrinkle is to notice that when lifting trees from N to P, Theorem 2.9 applies. This is because for each i, $\sup(\pi[\delta^{u_i}]) < \delta^{w_i}$.
We now describe our intended strategy for \(\mathcal{N} \). We call this strategy \(\Lambda \). Notice that if \(\mathcal{T} \) is a normal iteration of \(\mathcal{N} \) based on the interval \([\nu^0, \zeta]\) then \(\mathcal{T} \) can be re-organized as a stack of \(\omega \)-iterations \((\mathcal{T}_i, \mathcal{N}_i : i < \omega)\) where \(\mathcal{N}_0 = \mathcal{N} \), \(\mathcal{N}_{i+1} \) is the last model of \(\mathcal{T}_i \) and \(\mathcal{T}_{i+1} \) is the largest initial segment of \(\mathcal{T}_{\geq \mathcal{N}_i} \) that is based on the window \(\pi_{\mathcal{T}_{\leq \mathcal{N}_i}}(u_{i+1}) \).

Suppose then \(\mathcal{T} = (\mathcal{T}_i, \mathcal{N}_i : i < \omega) \) is a normal non-dropping iteration of \(\mathcal{N} \) based on \([\nu^0, \zeta]\). We say \(\mathcal{T} \) is according to \(\Lambda \) if and only if there is an iteration \(\mathcal{U} = (\mathcal{U}_i, \mathcal{P}_i : i < \omega) \) of \(\mathcal{P} \) and embeddings \(\pi_i : \mathcal{N}_i \rightarrow \mathcal{P}_i \) such that

1. \(\mathcal{P}_0 = \mathcal{P} \),
2. \(\mathcal{U}_i = \pi_i \mathcal{T}_i \) for each \(i < \omega \),
3. \(\mathcal{P}_{i+1} \) is the last model of \(\mathcal{U}_i \) for each \(i < \omega \),
4. for \(i < \omega \), letting \(s_i = \pi_{\mathcal{N}_i \mathcal{N}_i}(u_i) \), \(\lambda_i = \sup(\pi_i[\delta^i]) \) and \(Q_i = \mathcal{P}_i\mid(\lambda_i^+)\mathcal{P}_i \), \(\mathcal{P}_i[g][\pi_i] \models \text{“}\mathcal{U}_i \text{is according to the strategy (as described in Theorem 2.11) of}\ Q_i \text{”} \).

The reader can now use Theorem 2.9 and Neeman’s aforementioned result to show that \(\mathcal{N} \) has a \(\nu^0 \)-iteration strategy. The main point is that: for any \(\mathcal{P}[g] \)-generic \(G \subseteq \text{Coll}(\omega, \mathcal{T}) \), in \(\mathcal{P}[g][G] \), \(\mathcal{T} \) is countable, so we can find generics \(g_i \) for each \(i \) such that \(\pi_i \in \mathcal{P}_i[g][g_i] \). Furthermore, \(Q_i \)'s strategy is unique and uniquely extends to all generic extensions of \(\mathcal{P}_i \), so the procedure described above can be carried out in \(\mathcal{P}[g] \) using the forcing relation of \(\text{Coll}(\omega, \mathcal{T}) \).

\[\square \]

2.7 A revised authentication method

Suppose \(\mathcal{P} \) is an excellent hybrid premouse. Let \(g \) be \(\mathcal{P} \)-generic. We would like to know if \(S^\mathcal{P} \) has a canonical interpretation in \(\mathcal{P}[g] \). That this is possible follows from Theorem 2.3. Perhaps consulting Remark 2.1 will be helpful. However, to make these notions more precise, we will need to dig deeper into the proof of Theorem 2.3 and understand how the definition of \(\Psi^g \) works. For this we will need to understand expressions such as “\(Q \) is an authenticated sts premouse” and etc. The intended meaning of “authenticated” is the one used in the proof of [39, Theorem 6.1.5]. More specifically, the interested reader should consult [39, Definition 3.7.1, 3.7.2, 6.2.1 and 6.2.2]. Here we will briefly explain the meaning of the expression and state

\[42 \text{According to [30, Theorem 4.9.1] the size of the poset that adds } \pi_i \text{ to } \mathcal{P}_i \text{ is less than the generators of } \mathcal{U}_{\leq \mathcal{P}_i}, \text{ which is contained in } \pi_i(\nu^x). \]
a useful consequence of it that equates this notion to the standard notion of being constructed by fully backgrounded constructions (see Remark 2.15). The new key concepts are \((\mathcal{P}, \Sigma, X)\)-authenticated hybrid premouse and \((\mathcal{P}, \Sigma, X)\)-authenticated iteration. The essence of these two notions are as follows.

Definition 2.13 (Authenticated hod premouse) Suppose \((\mathcal{P}, \Sigma)\) is an sts pair, \(X \subseteq \mathcal{P}^b\) and \(\mathcal{R}\) is a hod premouse. We say \(\mathcal{R}\) is \((\mathcal{P}, \Sigma, X)\)-authenticated if there are

\((e1)\) a \(\Sigma\)-iterate \(S\) of \(\mathcal{P}\) such that iteration embedding \(\pi: \mathcal{P} \rightarrow S\) exists and

\((e2)\) an iteration \(U\) of \(\mathcal{R}\) with last model some \(S^b||\xi\).

The iteration \(U\) is constructed using information given by \(\pi[X]\). More precisely, for each maximal window \(w\) of \(S^b\), consider

\[s(\pi, X, w) = \text{Hull}_{S^b}(\pi[X] \cup \nu^w) \cap \delta^w. \]

It is required that for each limit \(\alpha < \text{lh}(U)\), if \(c = [0, \alpha]_U\) then one of the following two conditions holds:

\((C1)\) \(S \models "\delta(U)|\uparrow \alpha\) is not a Woodin cardinal”, \(Q(c, U|\uparrow \alpha)\) exists and \(Q(c, U|\uparrow \alpha) \leq S\), and

\((C2)\) \(S \models "\delta(U)|\uparrow \alpha\) is a Woodin cardinal” and letting \(w\) be the maximal window of \(S\) such that \(\delta^w = \delta(U|\uparrow \alpha)\), \(s(\pi, X, w) \subseteq \text{rng}(\pi^U|_c)\).

Usually, \(X\) is chosen in a way that for each window \(w\) of \(S\), \(\sup(s(\pi, X, w)) = \delta^w\). For such \(X\), conditions \((C1)\) and \((C2)\) completely determine \(U\).

Given a hod premouse \(\mathcal{P}\) of lsa type, a set \(X \subseteq \mathcal{P}^b\) and a set \(\Gamma\) consisting of iterations of \(\mathcal{P}\) we can similarly define \((\mathcal{P}, \Gamma, X)\)-authenticated hod premouse.

Definition 2.14 (Authenticated iteration) Suppose \(\mathcal{R}\) is a \((\mathcal{P}, \Sigma, X)\)-authenticated hybrid premouse and \(\mathcal{W}\) is an iteration of \(\mathcal{R}\). We say \(\mathcal{W}\) is \((\mathcal{P}, \Sigma, X)\) -authenticated if there is a triple \((S, U, \xi)\) \((\mathcal{P}, \Sigma, X)\)-authenticating \(\mathcal{R}\) such that \(\pi^U\) exists and \(\mathcal{W}\) is according to \(\pi^U\)-pullback of \(\Sigma^b||\xi\).

Suppose now that \(\mathcal{M}\) is an sts premouse based on \(\mathcal{P}\) and \(g\) is \(\mathcal{M}\)-generic for a poset in \(\mathcal{M}|\zeta\). Suppose \(\mathcal{R} \in \mathcal{M}|\zeta[g]\) is an lsa type hod premouse such that \(\mathcal{R}^b\) is \((\mathcal{P}, S^M, \mathcal{P}^b)\)-authenticated and \(\mathcal{R} = (\mathcal{R}|\delta^R)^\#\). In \(\mathcal{M}|[g]\), we can build an sts premouse \(\mathcal{W}\) based on \(\mathcal{R}\) using \((\mathcal{P}, S^M, \mathcal{P}^b)\)-authenticated iterations. This means that whenever \(U\) is an iteration indexed in \(\mathcal{W}\), \(\alpha < \text{lh}(U)\) is a limit ordinal such that \(\pi^U|\alpha, b\) exists and \(X\) is the longest initial segment of \(U_{\geq \alpha}\) that is based on \(V = \text{def } (\mathcal{M}_\alpha)^b\), then both \(\mathcal{V}\) and \(\mathcal{X}\) are \((\mathcal{P}, S^M, \mathcal{P}^b)\)-authenticated. In addition to the above, we also require that if \(Q\) is a \(Q\)-structure for some ambiguous tree in \(\mathcal{W}\) that has
been authenticated by \(W \) via the authentication procedure used in sts premouse then any iteration indexed in \(Q \) is \((\mathcal{P}, \mathcal{P}^b, S^M)\)-authenticated. Moreover, the same holds for all iterates of \(Q \) via the strategy witnessing that \(Q \) is authenticated in \(W \).

It is important to keep in mind that the above construction may fail simply because some non-\((\mathcal{P}, S^M, \mathcal{P}^b)\)-authenticated object has been constructed. Also, the same construction can be done using \((\mathcal{P}, S^M, X)\)-authenticated objects where \(X \subseteq \mathcal{P}^b \).

Remark 2.15 Suppose now that \(\mathcal{M} \) is an sts premouse based on \(\mathcal{P} \) and \(g \) is \(\mathcal{M} \)-generic for a poset in \(\mathcal{M}[\zeta] \). Suppose \(R \in \mathcal{M}[\zeta[g] \) is an lsa type hod premouse such that \(R^b \) is \((\mathcal{P}, \mathcal{P}^b, S^M)\)-authenticated and \(R = (R|\delta R)^\# \). Suppose \(\mathcal{M} \) has a Woodin cardinal \(\delta \) above \(\zeta \). To say that an sts premouse \(Q \) over \(R \) is \((\mathcal{P}, \mathcal{P}^b, S^M)\)-authenticated is equivalent to saying that \(Q \subseteq W \) where \(W \) is a model in the \((\mathcal{M}, \mathcal{P}^b)\)-authenticated fully backgrounded construction described in [39, Definition 6.2.2].

The reader maybe wondering why it is enough to only authenticate the lower level iterations. The reason is that in many situations the lower level strategies define the entire short tree strategy. This point was explained in Section 2.1.

The construction outlined above is called the \((\mathcal{P}, X, S^M)\)-authenticated hod pair construction over \(R \). The details of everything that we have said above appears in [39, Chapter 6.2]. The reader may choose to consult [39, Definition 6.2.2].

2.8 Generic Interpretability

In this portion of the current section, we would like to outline the proof of generic interpretability. As was mentioned before, generic interpretability is somewhat tricky for short tree strategies. This is because given an \(\Lambda \)-sts premouse \(\mathcal{N} \) and a tree \(T \in \mathcal{N}[h] \), \(T \) maybe short but \(\mathcal{N}[h] \) may not be able to find the branch of \(T \) that is according to \(\Lambda \), as this branch might have a \(Q \)-structure that is more complex than \(\mathcal{N} \).

Suppose \(\mathcal{P} \) is an excellent hybrid premouse. For the purposes of this paper, we say that \(\mathcal{P} \) satisfies **weak generic interpretability** if for every \(\mathcal{P} \)-generic \(g \), there is an sts strategy \(\Lambda \) for \(\mathcal{P}_0 \) that is definable (with parameters) over \(\mathcal{P}[g] \) such that for every tree \(T \in dom(\Lambda) \),

1. if \(T \) is unambiguous then letting \(\Lambda(T) = c \), either

 (a) for some node \(R \) of \(T \) such that \(\pi_{T \subseteq R}^c \) is defined, \(T_{\geq R} \) is a tree on \(R^b \) and \(T^\sim\{c\} \) is \((\mathcal{P}_0, \mathcal{P}^b_0, S_{\mathcal{P}})\)-authenticated, or
(b) the above clause fails, $Q(c, T)$ exists and $Q(c, T) \leq M(T)^\#$.

2. if T is ambiguous then letting $c = \Lambda(T)$, c is a cofinal branch if and only if $Q(c, T)$ exists and $T \dashv \{c\}$ is (P_0, P^b_0, S^P)-authenticated.

Proposition 2.16 Suppose P is an excellent hybrid premouse. Then P satisfies weak generic interpretability.

Proof. We outline the proof as the proof is very much like the proof of [39, Theorem 6.1.5]. Let g be P-generic. The definition of Λ essentially repeats the above clauses. We first consider trees that are unambiguous.

Suppose T is an unambiguous tree according to Λ, and suppose that for some node R on T, $\pi_{T^R.b}$ exists and $T_{\geq R}$ is a tree based on R^b. Because T is according to Λ, we may assume that $R = (P_0, P^b_0, S^P)$-authenticated. Thus, we can fix a window w of P such that g is $< \nu^w$-generic over P and letting W be the iterate of P_0 constructed by the fully backgrounded hod pair construction of $P|\delta^w$ using extenders with critical point $> \nu^w$, we can find an embedding $\sigma : R^b \to W^b$ such that

(a) $\pi^{U.b} = \sigma \circ \pi^{T.b}$ where U is the P_0-to-W tree according to S^P and

(b) $T_{\geq R}$ is according to σ-pullback of $S^P_{W^b}$.

Letting c be the branch according to the strategy as in (b), we have that $T \dashv \{c\}$ is (P_0, P^b_0, S^P)-authenticated. Moreover, there is only one such branch c. To see this, we need to reflect.

Let ξ be large and let $\pi : N \to P|\xi$ be a countable hull. Fix an N-generic $h \in P$. Let $U \in N[h]$ be an unambiguous tree on N_0 such that for some node S on U with the property that $\pi^{U.b}$ exists, $U_{\geq S}$ is a normal tree on S^b, and moreover, U is (N_0, N^b_0, S^N)-authenticated in $N[h]$. Suppose now that there are two distinct branches c and d obtained in the above manner. We can then fix N-windows u_1, u_2 that plays the role of w above and build K_1 and K_2, the equivalents of W above, inside $N|\delta^{u_1}$ and $N|\delta^{u_2}$. For $i \leq 2$, we have maps $m_i : S^b \to K^b_i$ and S^N-iteration maps $\tau_i : N^b_0 \to K^b_i$ such that $\tau_i = m_i \circ \pi^{U_{\leq S}.b}$. Let $\tau_i : K^b_i \to Y$ be the comparison map using strategies $(S^N)_{K^b_i}$. Then, for $i \in \{c, d\}$ there is an embedding $\lambda_i : M_i^{U} \to Y$ that factors into the iteration map from N^b_0 to Y. It is then easy to see, using branch condensation of S^P and its π-pullback, that $c = d$.

The rest of the argument is very similar. For example, we outline the proof of clause 2 in the definition of weak generic interpretability. Suppose $T \in P[g]$ is ambiguous and Q is a (P_0, P^b_0, S^P)-authenticated Q-structure for T. We want to see that there is a cofinal well-founded branch $c \in P[g]$ such that $Q(c, T) = Q$. As
above, instead of working with P, we can work with a reflection. Thus, we assume that $\pi: \mathcal{N} \rightarrow \mathcal{P}[\xi]$ is a countable elementary embedding, $h \in P$ is \mathcal{N}-generic and $T, Q \in \mathcal{N}[h]$. Moreover, we can assume that \mathcal{N} is pointwise definable. Let Ψ be the π-pullback of S^P. As Q is $(\mathcal{N}_0, \mathcal{N}_b, S^N)$-authenticated, it follows from Theorem 2.12 that Q has an iteration strategy as a $\Psi_{\mathcal{M}(T)^{\#}}$-sts premouse. Let c be the branch of T according to Ψ. As \mathcal{N} is pointwise definable we have that $Q(c, T)$-exists, and hence $Q(c, T) = Q$. □

Next we show that the low level strategies are in fact universally Baire. However, Proposition 2.20 shows that S^P itself does not have a universally Baire representation.

Proposition 2.17 Suppose P is excellent, g is P-generic and Σ is the generic interpretation of S^P onto $P[g]$. Let T be a countable iteration tree in $P[g]$ such that $\pi^{T,b}$-exists. Set $R = \pi^{T,b}(P)$. Then $(\Sigma_R \upharpoonright HC^P[g]) \in \Gamma^\infty$. Moreover, for any P-cardinal η there are η-complementing trees $T, S \in P[g]$ such that in all $< \eta$-generic extension of $P[g]$, $(p[T])^{P[g \upharpoonright h]} = \Sigma^h \upharpoonright HC^P[g \upharpoonright h]$.

Proof. We again outline the proof as the proof uses standard ideas. Let w be a maximal window of P such that g is generic for a poset in $P|\nu^w$. We now outline the construction producing ν^w-complementing trees (T, S) as in the statement of the proposition.

Let S be the model appearing on the hod pair construction of $P|\delta^w$ in which extenders used have critical points $> \nu^w$ and to which R normally iterates via Σ_R. Let $i: R \rightarrow S$ be the iteration embedding. What we need to show that club of hulls of $P[g]$ are correct about Σ_R, where we take Σ_R to be defined as i-pullback of the strategy of S that S inherits from P (see Theorem 2.11). That this works follows from the fact that the strategy of S has hull condensation. Let Ψ be the strategy of S.

More precisely, let $\phi(x, R, S, i)$ be the formula that says “$x \in R$ codes an iteration of R that is according to i-pullback of the Ψ”. Clearly, ϕ defines $\Sigma_R \upharpoonright HC^P[g]$. Let now ξ be large and $\pi: \mathcal{N} \rightarrow \mathcal{P}[\xi[g]$ be countable such that $R, (i, S) \in \text{rng}(\pi)$. Let $\Phi = \pi^{-1}(\Psi)$ and $j = \pi^{-1}(i)$. Let $h \in P[g]$ be a $< \pi^{-1}(\nu^w)$-generic over \mathcal{N}, and let $T \in \mathcal{N}[g]$ be a tree on R.

Suppose first that $\mathcal{N}[h] \models " jT \text{ is according to the strategy of } \Phi^h"$. Because Φ^h is the π-pullback of Ψ, we have that $iT = \pi(jT)$ is according to Ψ. Hence, T is according to Σ_R.

Next suppose that T is according to Σ_R. It then follows by the above reasoning that $\mathcal{N}[h] \models " jT \text{ is according to the strategy of } \Phi^h"$. This finishes the proof that Σ_R.
has a uB representation. The rest of the proposition follows from the fact that the formula ϕ above defines Σ_R in all $<\nu^w$-generic extensions of $\mathcal{P}[g]$. \qed

2.9 Fully backgrounded constructions inside excellent hybrid premice

Given an excellent hybrid premouse \mathcal{P}, we would eventually like to show that collapsing $((\delta^\mathcal{P})^+)^\mathcal{P}$ to be countable forces both Sealing and LSA – over – uB. Such an analysis of generic extensions of fine structural models usually requires some kind of re-constructibility property, which guarantees that the model can somehow see versions of itself inside it. In this subsection, we would like to establish some such facts about excellent hybrid premice. Proposition 2.18 is a key proposition that we will need in this paper.

Proposition 2.18 Suppose \mathcal{P} is excellent and g is \mathcal{P}-generic. Let Σ be the generic interpretation of $S^\mathcal{P}$ onto $\mathcal{P}[g]$, and suppose \mathcal{R} is a Σ-maximal iterate of \mathcal{P}_0. Let w be a maximal window of \mathcal{P} such that g is generic for a poset in $\mathcal{P}|\nu^w$ and $\mathcal{R} \in \mathcal{P}|\nu^w[g]$. Let $\xi < \delta^\mathcal{R}$ be a Woodin cardinal of \mathcal{R}. Suppose \mathcal{N}_0 is the output of the fully backgrounded hod pair construction of $\mathcal{P}|\delta^w[g]$ done relative to $\Sigma|\mathcal{R}|\xi$ and over $\mathcal{R}|\xi$ and using extenders with critical points $>\nu^w$. Then $\text{Ord} \cap \mathcal{N}_0 = \delta^w$.

Proof. Towards a contradiction, suppose that $\eta = \text{def} \text{Ord} \cap \mathcal{N}_0 < \delta^w$. We will now work towards showing that η is a Woodin cardinal of \mathcal{P}. As $\eta \in (\nu^w, \delta^w)$, this is clearly a contradiction. Suppose then η is not a Woodin cardinal of \mathcal{P}. As \mathcal{P} has no Woodin cardinals in the interval (ν^w, δ^w), we must have that there is a Σ-mouse $\mathcal{P}|\eta \subseteq \mathcal{Q} \subseteq \mathcal{P}$ such that η is a cutpoint of \mathcal{Q}, $\mathcal{Q} \models \text{"\eta is a Woodin cardinal"}$ but η is not Woodin relative to functions definable over \mathcal{Q}. Unfortunately \mathcal{Q} cannot be translated into a $\Sigma_{\mathcal{N}_0}$-mouse, but we can rebuild it in a sufficiently rich model extending \mathcal{N}_0.

Let \mathcal{N} be the output of fully backgrounded construction of $\mathcal{P}|\delta^w[g]$ done with respect to $\Sigma_{\mathcal{N}_0}$ and over \mathcal{N}_0 using extenders with critical point $>\eta$. As \mathcal{N}_0 is a Σ-maximal iterate of \mathcal{P}_0, we have that $\mathcal{N} \models \text{"\eta is a Woodin cardinal"}$. We now want to rebuild \mathcal{Q} inside $\mathcal{N}[\mathcal{P}|\eta]$. The idea here goes back to [39, Theorem 8.1.13] (for instance, the construction of \mathcal{N}_2 in the proof of the aforementioned theorem.). Notice that if p is the \mathcal{P}_0-to-\mathcal{N}_0-iteration then $\pi^{p,b}$ exists and $\pi^{p,b} \in \mathcal{N}[\mathcal{P}|\eta]$. Let $X = \pi^{p,b}[\mathcal{P}_0]$. Working inside $\mathcal{N}[\mathcal{P}|\eta]$ we can build a Σ-premouse over $\mathcal{P}|\eta$ via a fully

^{43}p is a stack of two normal trees.
backgrounded \((N_0, X, S^X)-\)authenticated constructions. In this construction we only use extenders with critical point \(> \eta\). Let \(W\) be the output of this construction. As \(W\) is universal, we have that \(Q \subseteq W\). Thus, \(N[P|\eta] \models "\eta\) is not a Woodin cardinal"

However, standard arguments show that \(N[P|\eta] \models "\eta\) is a Woodin cardinal". Indeed, let \(f : \eta \to \eta\) be a function in \(N[P|\eta]\). Because \(P|\eta\) is added by an \(\eta\)-cc poset, we can find \(g \in N\) such that for every \(\alpha < \eta\), \(f(\alpha) < g(\alpha)\). Let \(E \in E^N_0\) be any extender witnessing Woodiness for \(g\) and such that \(N \models "\nu_E\) is a measurable cardinal". Thus, \(\pi^N_E(g)(\kappa) < \nu_E\), where \(\kappa\) is the critical point of \(E\). Let \(F\) be the resurrection of \(E\). We must have that \(\pi_P^F(f)(\kappa) < \nu_E\). Thus, \(F \upharpoonright \nu_E \in P|\eta\) is an extender witnessing Woodiness for \(f\) in \(P|\eta\) and hence in \(N[P|\eta]\). \(\square\)

Using Proposition 2.18, we can now prove that \(S^P\) itself is not a universally Baire set. Its proof requires a few more facts from [39], which we now review. Given an lsa type pair \((P, \Sigma)\), following [39, Definition], we let \(\Gamma^b(P, \Sigma)\) be the set of reals \(A\) such that for some countable iteration \(T\) such that \(\pi^T, b\) exists, \(A\) is Wadge reducible to \(\pi^T, b(P^b)\). The following comparison theorem is essentially [39, Theorem 4.10.4].

Theorem 2.19 Assume \(AD^+\) and suppose \((P, \Sigma)\) and \((Q, \Lambda)\) are two lsa type hod pairs such that \(\Gamma^b(P, \Sigma) = \Gamma^b(Q, \Lambda)\) and both \(\Sigma\) and \(\Lambda\) are splendid. Then there is an lsa type hod pair \((R, \Psi)\) such that \(R\) is a \(\Sigma\)-iterate of \(P\) and a \(\Lambda\)-iterate of \(Q\) and \(\Sigma_R = \Psi = \Lambda_R\).

Proposition 2.20 Suppose \(P\) is excellent and \(g\) is \(P\)-generic. Let \(\Sigma\) be the generic interpretation of \(S^P\) onto \(P[g]\). Then \(P[g] \models \Sigma \notin \Gamma^\infty\).

Proof. Towards a contradiction, suppose that \(P[g] \models \Sigma \in \Gamma^\infty\). Let \((w_i : i < \omega)\) be a sequence of successive windows of \(P\) such that \(g\) is generic over a poset in \(P|\nu_{w_0}\). Set \(\delta_i = \delta^{w_i}\).

For each \(i\), let \(P_i\) be the \(S^P\)-iterate built via the fully backgrounded hod pair construction of \(P|\delta_i\) using extenders with critical points \(> \nu^{w_i}\). It follows from Proposition 2.18 that

\[
\delta^{P_i} = \delta_i,
\]

i.e., \(\delta_i\) is the largest Woodin cardinal of \(P_i\).

Fix now \(k \subseteq Coll(\omega, < \delta_\omega)\) generic over \(P[g]\) where \(\delta_\omega = \sup_{i < \omega} \delta_i\). Recall next that Steel showed that if there are unboundedly many Woodin cardinals then every universally Baire set has a universally Baire scale (see [48, Theorem 4.3]\(^{44}\)). Let now

\(^{44}\)Recall that by a result of Martin, Steel and Woodin for a \(\lambda\) a limit of Woodins, \(Hom_{< \lambda}\) coincides with the \(< \lambda\)-universally Baire sets. See [48, Theorem 2.1] and [48, Chapter 2].
W be the derived model of \mathcal{P} as computed in $\mathcal{P}[m]$ where $m = g \ast k$. It follows that

(1) the canonical set of reals coding $\Sigma^m \upharpoonright HC^W$ has a 45 scale in W.

This paragraph will be using Theorem 2.19 and the notation introduced there. Working inside W, let $\Gamma = \Gamma^b(\mathcal{P}_0, \Sigma^m)$. Thus, Γ is the set of reals that are generated by the low-level-components of Σ^m. More precisely, $A \in \Gamma$ if there is an iteration T on \mathcal{P}_0 according to Σ^m such that π^T, b exists and A is Wadge below $\Sigma^m_{\pi^T, b}(\mathcal{P}_0)$. As $\Sigma^m \upharpoonright HC^W$ is Suslin, co-Suslin in W, we must have a hod pair $(S, \Lambda) \in W$ such that $\Gamma^b(S, \Lambda) = \Gamma$ (this follows from the Generation of Mouse Full Pointclasses, see [39, Theorem 10.1.1]). We can further assume that S is a Σ^m-iterate of \mathcal{P}_0 and $\Lambda^{ste} = \Sigma^m_s \upharpoonright HC^W$ (this extra possibility follows from Theorem 2.19).

Fix now $i < \omega$ such that letting $n = k \cap Coll(\omega, \delta_i)$, $\mathcal{P}[g \ast n]$ has a uB representation of Λ. It now follows that since

(1) \mathcal{P}_{i+1} is a Λ-iterate of S and
(2) letting $l : S \to \mathcal{P}_{i+1}$ be the iteration embedding, $l[\delta^S]$ is cofinal in $\delta^{\mathcal{P}_{i+1}}$,

we have

$$\delta^{\mathcal{P}_{i+1}} < \delta_{i+1}.$$

This directly contradicts (1). \blacksquare

2.10 Constructing an iterate via fully backgrounded constructions

Suppose \mathcal{M} is strategy-hybrid η-iterable mouse such that $\mathcal{M} \in V_\eta$, η is an inaccessible cardinal and \mathcal{M} has an η-strategy with hull condensation. Thus \mathcal{M} has an extender sequence \vec{E} and a strategy predicate $S^\mathcal{M}$, which can be a strategy of \mathcal{M} itself (as in hod mice) or a strategy of some $\mathcal{N} \in \mathcal{M}$. We want to build an iterate \mathcal{X} of \mathcal{M} such that the extenders of \mathcal{X} are all fully backgrounded. Here we describe this construction.

We say $(\mathcal{V}_\xi, W_\xi, T_\xi, \mathcal{X}_\xi : \xi < \iota)$ are the models and iterations of the fully backgrounded (\mathcal{M}, Σ)-iterate-construction of V_η if the following conditions are satisfied with $\alpha_\xi = Ord \cap \mathcal{V}_\xi$.

45We will identify Code(Σ) with Σ itself in this paper.

44
1. $V_0 = W_0 = J_0^M$.

2. For every $\xi < \iota$, $V_\xi = W_\xi|_{\alpha_\xi}$.

3. For $\xi < \iota$, T_ξ is an iteration of M according to Σ with last model X_ξ such that $V_\xi = X_\xi|_{\alpha_\xi}$ and the generators of T_ξ are contained in α_ξ.

4. For $\xi < \iota$, if $\alpha_\xi \in dom(\bar{E}^{X_\xi}) \cup dom(S^{X_\xi})$ then $W_\xi = X_\xi||_{\alpha_\xi}$.

5. For $\xi < \iota$, if $\alpha_\xi \not\in (dom(\bar{E}^{X_\xi}) \cup dom(S^{X_\xi}))$ and $V_\xi \neq X_\xi$ then $W_\xi = J_1(V_\xi)$.

6. For $\xi < \iota$, if there is a total extender $F \in V_\eta$ such that

$$\pi_F((V_\zeta, W_\zeta, T_\zeta, X_\zeta : \zeta < \xi)) \upharpoonright \xi = (V_\zeta, W_\zeta, T_\zeta, X_\zeta : \zeta < \xi),$$

then $F \cap V_\xi = E^{X_\xi}_{\alpha_\xi}$. It follows that $W_\xi = (V_\xi, E^{X_\xi}_{\alpha_\xi})$.

7. For $\xi + 1 < \iota$, $V_{\xi + 1} = \mathcal{C}(W_\xi)$.

8. If $\xi < \iota$ is limit then $V_\xi = \liminf_{\zeta \to \iota} V_\zeta$. More precisely, given $V_\xi|_{\kappa}$, $V_\xi|_{(\kappa^+)^{V_\xi}}$ is the eventual value of $V_\xi|_{(\kappa^+)^{V_\xi}}$.

We then let $\text{FBIC}(M, \Sigma, \eta, \lambda, \nu)$ be the models and iterations of the above construction. We can vary this construction in two ways. The first way is that fixing some $\lambda < \eta$ we can require that extender F in clause 6 has critical point $> \lambda$. This amounts to backgrounding extenders via total extenders that have critical points $> \lambda$. The second way is that we may choose to start the construction with any initial segment of M. More precisely, given a cardinal cutpoint ν of M, we can start by setting $V_0 = M|\nu$.

Thus, by saying that $(V_\xi, W_\xi, T_\xi, X_\xi : \xi < \iota)$ are the models and iterations of the $\text{FBIC}(M, \Sigma, \eta, \lambda, \nu)$ we mean that the sequence is built as above but starting with $M|\nu$ and using backgrounded extenders that have critical points $> \lambda$.

$\text{FBIC}(M, \Sigma, \eta, \lambda, \nu)$ can break without reaching its eventual goal. We say

$$\text{FBIC}(M, \Sigma, \eta, \lambda, \nu)$$

is successful if one of the following conditions holds.

1. $\iota = \xi + 1$, π^{T_ξ} exists and either $V_\xi = X_\xi$ or $W_\xi = X_\xi$.

\[\text{There is only one such iteration } T_\xi.\]
2. ι is a limit ordinal and $\liminf_{\xi \to \iota} \mathcal{V}_\xi$ is the last model of a normal Σ-iteration \mathcal{T} of \mathcal{M} such that $\pi^\mathcal{T}$ exists.

If $\text{FBIC}(\mathcal{M}, \Sigma, \eta, \lambda, \nu)$ is successful, then we say \mathcal{N} is its output if it is the iterate of \mathcal{M} described above.

The following is the main theorem that we will need from this section. We say E is a strictly short extender if its generators are bounded below $\pi_E(\text{crit}(E))$. We say \mathcal{M} is strictly short if all of its extenders are strictly short.

Theorem 2.21 Suppose (\mathcal{M}, Σ) and η are as above and in addition to the above data, η is a Woodin cardinal and \mathcal{M} is strictly short. Suppose $\lambda < \eta$ and ν is a cutpoint cardinal of \mathcal{M}. Then $\text{FBIC}(\mathcal{M}, \Sigma, \eta, \lambda, \nu)$ is successful.

The proof is a standard combination of universality (see [54, Lemma 11.1]) and stationarity (see [45, Lemma 3.23]) of fully backgrounded constructions.

3 An upper bound for Sealing and LSA – over – uB

The goal of this section is to prove Theorem 3.1. It reduces Sealing, Tower Sealing, and LSA – over – uB to a large cardinal theory. This essentially constitutes one half of Theorem 1.4 and Theorem 1.8.

Theorem 3.1 Suppose \mathcal{P} is excellent and $g \subseteq \text{Coll}(\omega, \delta^\mathcal{P})$ is \mathcal{P}-generic. Then both Sealing and LSA – over – uB hold in $\mathcal{P}[g]$.

We start the proof of Theorem 3.1. Let \mathcal{P} be excellent (see Definition 2.6). Set $\delta_0 = \delta^\mathcal{P}$ and let $g \subseteq \text{Coll}(\omega, \delta_0)$ be \mathcal{P}-generic. We first show that Sealing holds in $\mathcal{P}[g]$. Let $\mathcal{P}_0 = \text{def}(\mathcal{P}|\delta_0)^\#$. We write $\mathcal{P} = (|\mathcal{P}|, \in, E^\mathcal{P}, S^\mathcal{P})$ where $E^\mathcal{P}$ is the extender sequence of \mathcal{P} and $S^\mathcal{P}$ is the predicate coding the short-tree strategy of \mathcal{P}_0 in \mathcal{P}. Thus, \mathcal{P} above δ_0 is a short tree strategy premouse over \mathcal{P}_0.

Let Σ^- be this short tree strategy. It follows from Proposition 2.16 that for any $\mathcal{P}[g]$-generic h, Σ^- has a canonical extension Σ^h in $\mathcal{P}[g \ast h]$\(^{47}\). Let then Σ be the extension of Σ^- in $\mathcal{P}[g]$.

\(^{47}\)It is not correct to say that $\Sigma \in \mathcal{P}$. The correct language is that Σ is a definable class of \mathcal{P} and Σ^g is a definable class of $\mathcal{P}[g]$.

46
3.1 An upper bound for Sealing

Let h be $\mathcal{P}[g]$-generic. Working in $\mathcal{P}[g][h]$, let $\Delta^h = \Gamma^b(\mathcal{P}_0, \Sigma)$. Equivalently, Δ^h is the set of reals $A \subseteq \mathbb{R}^{\mathcal{P}[g^h]}$ such that for some countable tree \mathcal{T} on \mathcal{P}_0 with last model Q such that $\pi^{T,b}$ exists, $A \in L(\Sigma^h_{Q,b}, \mathbb{R}^{\mathcal{P}[g^h]})$. It follows from Proposition 2.17 that if Q is as above then $\Sigma^h_{Q,b} \in \Gamma^\infty_{g^h}$.

Lemma 3.2 $\Gamma^\infty_{g^h} = \Delta^h$.

Proof. It follows from Proposition 2.17 that $\Delta^h \subseteq \Gamma^\infty_{g^h}$. Fix $A \subseteq \mathbb{R}^{\mathcal{P}[g^h]}$ that is a universally Baire set in $\mathcal{P}[g^h]$. Work in $\mathcal{P}[g^h]$, and suppose $A \not\in \Delta^h$. Because there are proper class of Woodin cardinals, any two universally Baire sets are Wadge comparable. Since $\Delta^h \cup \{A\} \subseteq \Gamma^\infty_{g^h}$ and $A \not\in \Delta^h$, we have that $\Delta^h \subseteq L(A, \mathbb{R}_{g^h})$. Recall that by a result of Steel ([48, Theorem 4.3]), A is Suslin, co-Suslin in $\Gamma^\infty_{g^h}$. Hence, we can assume, without losing generality, that in $L(A, \mathbb{R}_{g^h})$, there are Suslin, co-Suslin sets beyond Δ^h.

It follows from [39, Theorem 10.1.1] that there is a lsa type hod pair $(\mathcal{S}, \Lambda) \in \Gamma^\infty_{g^h}$ such that $\Gamma^b(\mathcal{S}, \Lambda) = \Delta^h$. Just like in the proof of Proposition 2.20 we can assume that \mathcal{S} is a $\Sigma^h_\mathcal{S}$-iterate of \mathcal{P}_0 and $\Lambda^{stc} = \Sigma^h_\mathcal{S}$. It then follows that $\Sigma^h \in \Gamma^\infty_{g^h}$, contradicting Proposition 2.20. □

By the results of [39, Section 8.1] (specifically, [39, Theorem 8.1.1 clause 4]), we get that in $\mathcal{P}[g * h]$,

$$\Delta^h = \psi(\mathbb{R}_{g^h}) \cap L(\Delta^h, \mathbb{R}_{g^h}).$$

(2)

The lemma and (2) immediately give us clause (1) of Sealing. For clause (2), let h be $\mathcal{P}[g]$-generic and k be $\mathcal{P}[g * h]$-generic. We want to show that there is an elementary embedding

$$j : L(\Delta^h, \mathbb{R}_{g^h}) \to L(\Delta^{h * k}, \mathbb{R}_{g^h * k})$$

such that for every $A \in \Delta^h$, $j(A)$ is the canonical extension of A in $\mathcal{P}[g * h * k]$. This will be accomplished in Lemma 3.4. The next lemma provides a key step in the construction of the desired elementary embedding. It does so by realizing $L(\Delta^h, \mathbb{R}_{g^h})$ as a derived model of an iterate of \mathcal{P}_0.

Lemma 3.3 Suppose m is a $\mathcal{P}[g]$-generic and \mathcal{S} is a countable $\Sigma^m_{\mathcal{S}}$-iterate of \mathcal{P}_0 such that \mathcal{P}_0-to-\mathcal{S} iteration embedding exists. Suppose $\kappa < \delta^\mathcal{S}$ is a Woodin cardinal of \mathcal{S} and $A \in \Gamma^\infty_{g^m}$. There is then a countable $\Sigma^m_{\mathcal{S}}$-iterate \mathcal{W} of \mathcal{S} such that \mathcal{S}-to-\mathcal{W} iteration embedding exists, \mathcal{S}-to-\mathcal{W} iteration is above κ and A is Wadge below $\Sigma^m_{\mathcal{W}}$.
Proof. The lemma follows from Proposition 2.18. Indeed, let \(w \) be a window of \(P \) such that \(g \ast m \) is generic for a poset in \(P|\nu^w \). Let \(N_0 \) be the output of \(\text{FBIC}(S, \Sigma^m, \delta^w, \nu^w, \kappa) \) (see Theorem 2.21). Thus, \(N_0 \) is a \(\Sigma^m \)-iterate of \(S \) above \(\kappa \), and all of its extenders with critical point \(> \kappa \) have, in \(P|g \ast h \), full background certificates whose critical points \(> \nu^w \). We also have that \(\text{Ord} \cap N_0 = \delta^w \) (see Proposition 2.18). Working inside \(N_0 \), let \(N \) be the output of the hod pair construction of \(N_0 \) done using extenders with critical point \(> \delta^w \).

It follows from Lemma 3.2 that there is a countable iteration \(p \) of \(P_0 \) according to \(\Sigma^m \) such that \(\pi^p \) exists and letting \(\mathcal{R} = \pi^p(P_0) \), \(A \) is Wadge below \(\Sigma^m_{\mathcal{R}} \). Fix such a \((p, \mathcal{R})\). We now claim that

\[\text{Claim. for some } \xi < \delta^{N^*_R}, \mathcal{N}|\xi \text{ is a } \Sigma^m_{\mathcal{R}} \text{-iterate of } \mathcal{R}. \]

Proof. To see this, we compare \(\mathcal{R} \) with the construction producing \(\mathcal{N} \). We need to see that \(\mathcal{R} \) can be compared with \(\mathcal{N} \). There are two ways such a comparison could go wrong.

1. \(\mathcal{N} \) and \(\mathcal{R} \) are not full with respect to the same \(Lp \)-operator. More precisely, for some normal \(\Sigma^m_{\mathcal{R}} \)-iteration \(\mathcal{T} \) of limit length letting \(b = \Sigma^m_{\mathcal{R}}(\mathcal{T}) \), either

 (a) \(\mathcal{M}_b^T \models \text{“} \delta(\mathcal{T}) \text{ is a Woodin cardinal”} \) and \(\mathcal{N} \models \text{“} \delta(\mathcal{T}) \text{ is not a Woodin cardinal”} \)

 (b) \(\mathcal{M}_b^T \models \text{“} \delta(\mathcal{T}) \text{ is not a Woodin cardinal”} \) and \(\mathcal{N} \models \text{“} \delta(\mathcal{T}) \text{ is a Woodin cardinal”} \).

2. A strategy disagreement is reached. More precisely, for some normal \(\Sigma^m_{\mathcal{R}^*} \)-iteration \(\mathcal{T} \) with last model \(\mathcal{R}^* \) and some \(\xi \) which is a Woodin cardinal of \(\mathcal{R}^* \), \(\mathcal{R}^*|\xi = \mathcal{N}|\xi \) yet \(\Sigma^m_{\mathcal{R}^*|\xi} \neq \Sigma^m_{\mathcal{R}|\xi} \).

It is easier to argue that case 2 cannot happen. This essentially follows from [39, Theorem 4.6.8], noting that we need to assume (1) fails to run the argument there. Let \(\zeta < \delta^w \) be such that \(\mathcal{N}|\zeta \) is constructed in \(N_0|\zeta \). Because \(\mathcal{N} \) is backgrounded via extenders whose critical points are \(> \delta^{N_0} \), the fragment of \(\Sigma^m_{N_0} \) we need to compute the strategy of \(\mathcal{N}|\zeta \) is the fragment that acts on non-dropping trees that are above \(\delta^{N_0} \) and are based on \(N_0|\zeta \). Then [39, Theorem 4.6.8] implies that this fragment of \(\Sigma^m_{N_0} \) is induced by the unique strategy of \(P|\zeta \). The same strategy of \(P|\zeta \) also induces \(\Sigma^m_{\mathcal{R}^*|\xi} \). Therefore, clause 2 cannot happen.

We now show that clause 1 also cannot happen. Suppose \(\xi < \delta^{N^*_0} \) is a limit of Woodin cardinals or is a Woodin cardinal. Let \(\zeta = \sigma^{\mathcal{N}}(\xi) \), the Mitchell order of \(\xi \),
and let T be a normal tree on R with last model W such that $W|\zeta = N|\zeta$ and the generators of T are contained in ζ. Furthermore assume that ζ is a cutpoint in W. Let ν be the least Woodin cardinal of W above ζ, and let τ be the least Woodin cardinal of N above ζ. It is enough to show that whenever $(T, W, \xi, \zeta, \nu, \tau)$ are as above then $W|\nu$ normally iterates via $\Sigma^m_{W|\nu}$ to $N|\tau$.

To see this it is enough to show that if U is a normal tree on $W|\nu$ of limit length and $M(U) \subseteq N|\tau$ then setting $b = \Sigma^m_{W}(U)$, either

1. $\delta(U) < \tau$ and $Q(\beta, U)$ exists and $Q(b, U) \subseteq N|\tau$ or

2. $\delta(U) = \tau$ and $\pi^b_\delta(\nu) = \tau$.

To see the above, fix U and b as above. Suppose first that $\delta(U) < \tau$. Let $Q \subseteq N|\tau$ be largest such that $Q \models \text{"$\delta(U)$ is a Woodin cardinal".}$ Then, as Σ^m is fullness preserving, $Q \subseteq M^b_\delta$.

Suppose then $\delta(U) = \tau$. If $\pi^b_\delta(\nu) > \tau$ then $Q(b, U)$-exists and is Ord-iterable inside $P[g * m]$. Working inside N, let K be the output of the fully backgrounded construction of N done with respect to $S^N_{N|\tau}$ over $N|\tau$ and using extenders with critical point $> \delta^N b$. Because K is universal we must have that $Q(\beta, U) \subseteq K$. Thus, $K \models \text{"$\tau$ is not a Woodin cardinal"}$, which implies that $N \models \text{"$\tau$ is not a Woodin cardinal"}$.

Let now Y^* be a normal tree on S according to Σ^m_S whose last model is N_0. Let $\eta \in (\delta^N b, \delta^w)$ be such that R iterates to the hod pair construction of $N_0|\eta$. Let $E \in E^{N_0}$ be such that $\text{crit}(E) = \delta^{N_0}$ and $\text{lh}(E) > \eta$. Let $\alpha < \text{lh}(Y^*)$ be least such that $E \in M^b_\alpha$ and set $Y^{**} = Y^* \uparrow \alpha + 1$. Finally, set $V = Y^{**} \setminus \{E\}$. Notice that if V is the last model of γ then π^{V}-exists.

To finish the proof of the lemma, we need to take a countable Skolem hull of $P[\lambda|g * m]$ where $\lambda = ((\delta^w)^+)^P$. Let $\pi : M \rightarrow P[\lambda|g * m]$ be a countable Skolem hull of $P[\lambda|g * m]$ such that $R, N, Y \in \text{rng}(\pi)$. Let $X = \pi^{-1}(Y)$ and let W be the last model of X. By elementarity, $X = X^{**} \setminus \{F\}$ and R normally iterates via Σ^m_R to a hod pair construction of $W|\text{lh}(F)$. It follows now that $\Sigma^m_{W|^b}$ is Wadge above Σ^m_R, and hence, Wadge above A. Therefore, X is as desired.

Lemma 3.4 There is an elementary embedding

$$j : L(\Delta^h, \mathbb{R}^{P[g*h]}) \rightarrow L(\Delta^{h*k}, \mathbb{R}^{P[g*h*k]})$$

such that for each $A \in \Delta^h$, $j(A) = A^k$, the interpretation of A in $P[g * h * k]$.

49
Proof. Let $W_1 = L(\Delta^h, \mathbb{P}[g^h])$ and $W_2 = L(\Delta^{h+k}, \mathbb{P}[g^{h+k}])$. Let C be the set of inaccessible cardinals of $\mathbb{P}[g \ast h \ast k]$. Because we have a class of Woodin cardinals, it follows that $(\Delta^h)^\#$ exists. Moreover, for $\Gamma \subseteq \phi(\mathbb{R})$, assuming $\Gamma^\#$ exists, any set in $L(\Gamma, \mathbb{R})$ is definable from a set in Γ, a real and a finite sequence of indiscernibles. It is then enough to show that

\[(*) \text{ if } s = (\alpha_0, \ldots, \alpha_n) \in C^{\lt \omega}, A \in \Delta^h, x \in \mathbb{R}_{g^h} \text{ and } \phi \text{ is a formula then}
L(\Delta^h, \mathbb{R}_{g^h}) \models \phi[A, x, s]\text{ if and only if } L(\Delta^{h+k}, \mathbb{R}_{g^{h+k}}) \models \phi[A^k, x, s].\]

Indeed, we first show that (\ast) induces an elementary $j : W_1 \rightarrow W_2$ as desired. Let Y be the set of a that are definable over $L(\Delta^{h+k}, \mathbb{R}_{g^{h+k}})$ from a member of $C^{\lt \omega}$, a set of the form A^k for some $A \in \Delta^h$ and a real $x \in \mathbb{R}_{g^h}$. Notice that (\ast) implies that

Claim 1. Y is elementary in $L(\Delta^{h+k}, \mathbb{R}_{g^{h+k}})$.

Proof. We show that Y is Σ_1-elementary. The general case follows from Tarski-Vaught criteria. To see this fix $a \in Y$ and let ϕ is a Σ_1 formula. Suppose that

$W_2 \models \phi[a]$.

Fix a term $t, s \in C^{\lt \omega}$, a set of the form A^k where $A \in \Delta^h$ and $x \in \mathbb{R}_{g^h}$ such that

$a = t^{W_2}[s, A^k, x]$. It then follows from (\ast) that if $b = t^{W_1}[s, A, x], W_1 \models \phi[b]$. Let $\phi = \exists u \psi(u, v)$. Fix a term $t_1, s_1 \in C^{\lt \omega}, B \in \Delta^h$ and $y \in \mathbb{R}_{g^h}$ such that setting $c = t_1^{W_1}[s_1, B, y], W_1 \models \psi[c, b]$. Therefore, (\ast) implies that if $d = t^W[s_1, B^k, y]$ then $W_2 \models \psi[d, a]$. As $d \in Y$, we have $Y \models \phi[a]$.

Let now N be the transitive collapse of Y. It is enough to show that $N = W_1$. This easily follows from (\ast) and the proof of the claim. For example let us show that $\mathbb{R}^N = \mathbb{R}^{W_1}$. Fix $x \in \mathbb{R}^N$. Let t be a term, $s \in C^{\lt \omega}, A \in \Delta^h$ and $a \in \mathbb{R}^{W_1}$ such that

$x = t^{W_2}[s, A^k, a]$. Letting $y = t^{W_1}[s, A, a]$, it is easy to see that $x = y$. We now let $j : W_1 \rightarrow W_2$ be the inverse of the transitive collapse of Y. Clearly j is elementary and $j(A) = A^k$ for $A \in \Delta^h$.

By a similar reduction, using the definition of Δ^h and Δ^{h+k} it is enough to show that $(\ast\ast)$ holds where

\[(\ast\ast) \text{ if } s = (\alpha_0, \ldots, \alpha_n) \in C^{\lt \omega}, T \text{ is a countable iteration of } \mathbb{P}_0 \text{ according to } \Sigma^h \text{ such that } \pi_{T, b} \text{ exists, } R = \pi_{T, b}(\mathbb{P}_0^b), x \in \mathbb{R}_{g^h} \text{ and } \phi \text{ is a formula then}
W_1 \models \phi[\Sigma^h_{R}, x, s]\text{ if and only if } W_2 \models \phi[\Sigma^{h+k}_{R}, x, s].\]

50
To show (**), let $s \in C^{<\omega}$, T be a countable iteration of \mathcal{P}_0 according to Σ^h such that $\pi^{T,h}$ exists, $\mathcal{R} = \pi^{T,h}(\mathcal{P}_0^h)$, $x \in \mathbb{R}_{g*h}$ and ϕ be a formula such that $W_1 \models \phi[\Sigma^h_{\mathcal{R}},x,s]$. Notice that without losing generality, we can assume that π^T exists, as otherwise we can work with a shorter initial segment of T that produces the same bottom part \mathcal{R}. Let \mathcal{S}^* be the last model of T, and let \mathcal{S}^{**} be the ultrapower of \mathcal{S}^* by the least extender on the sequence of \mathcal{S}^* with the critical point δ^R. Let ι be the least Woodin of \mathcal{S}^{**} that is $> \delta^R$. Let W be the Σ^h-iterate of \mathcal{S}^{**} that is obtained via an x-genericity iteration done in the window (δ^R, ι).

We would now like to see that $W_2 \models \phi[\Sigma^h_{\mathcal{R}};x,s]$. The idea is to realize W_1 and W_2 respectively as a derived model of W. Given a transitive model of set theory M with λ a limit of Woodin cardinals of M we let $D(M,\lambda)$ be the derived model at λ as computed by some symmetric collapse of λ. While $D(M,\lambda)$ depends on this generic, its theory does not. Thus, expressions like $D(M,\lambda) \models \psi$ have an unambiguous meaning. If $u \subseteq Coll(\omega, < \lambda)$ is the generic then $D(M,\lambda,u)$ is the derived model computed using u.\(^{48}\)

To finish the proof we will need a way of realizing W_1 as a derived model of an iterate of W that is obtained by iterating above ξ, where ξ is the least Woodin cardinal of W above δ^R. The same construction will also realize W_2 as a derived model of a W's iterate. Let $l \subseteq Coll(\omega, \Gamma^\infty_{g*h})$ be $\mathcal{P}[g*h]$-generic. Working in $\mathcal{P}[g*h*l]$, let $(A_i : i < \omega)$ be a generic enumeration of Γ^∞_{g*h}, and let $(x_i : i < \omega)$ be a generic enumeration of \mathbb{R}_{g*h}.

(1) There is sequence $(W_i, p^*_i, p_i : i < \omega) \in \mathcal{P}[g*h*l]$ such that

1. for each $n < \omega$, $(W_i, p^*_i, p_i : i \leq n) \in HC\mathcal{P}[g*h]$,

2. $W_0 = W$,

3. letting $E_i \in \bar{E}^{|W_i|}$ be the Mitchell order 0 measure on $\delta^{\mathcal{M}_i}$ and $\mathcal{M}_i = Ult(W_i, E_i)$, p^*_i is an iteration of \mathcal{M}_i according to $\Sigma^h_{\mathcal{M}_i}$ that is above $\delta^{\mathcal{M}_i}$, has a last model \mathcal{N}_i and is such that $\pi_{p^*_i}$ exists and for some $\nu_i < \delta^{\mathcal{M}_i}$ a Woodin cardinal of \mathcal{N}_i, $A_i <_w \Sigma^h_{\mathcal{N}_i}|\nu_i$,

4. fixing some ν_i as above and letting ξ be the least Woodin cardinal of \mathcal{N}_i that is $> \nu_i$, W_{i+1} is the $\Sigma^h_{\mathcal{N}_i}$-iterate of \mathcal{N}_i that is above ν_i and makes x_i generic at the image of ξ; p_i is the corresponding iteration.

\(^{48}\)This is sometimes called the “old” derived model. $D(\mathcal{M},\lambda,u)$ has the form $L(\mathbb{R}^*_u, Hom^*_\lambda)$ where $\mathbb{R}^*_u = \bigcup_{\alpha < \lambda}\mathcal{M}[u|\alpha]$ and Hom^* is the collection of $A \subseteq \mathbb{R}^*_u$ in $\mathcal{M}(|\mathbb{R}^*_u|)$ such that there are $< \lambda$-complementing trees $T, U \in \mathcal{M}[u \upharpoonright \beta]$ for some $\beta < \lambda$ such that $p(T)|\mathcal{M}(\mathbb{R}^*_u) = A = \mathbb{R}^*_u - p[U]$. 51
The proof of (1) is a straightforward application of Lemma 3.3. Let $\pi_{i,j} : W_i \to W_j$ be the iteration embedding, and let W_ω be the direct limit of $(W_i, \pi_{i,j} : i < j < \omega)$. It follows that for some $u \subseteq Coll(\omega, < \delta^{W_\omega})$-generic,

(2) $\mathbb{R}^{W_\omega}[u] = \mathbb{R}_{g^h}$ and $\Gamma^\infty_{g^h} = \varphi(\mathbb{R}_{g^h}) \cap D(W_\omega, \delta^{W_\omega}, u)$ and hence,

(3) $W_1 = D(W_\omega, \delta^{W_\omega}, u)$

Letting S stand for the strategy predicate and t be the sequence of the first n indiscernibles of $W|\delta^{W_\omega}$, we thus get by our assumption $W_1 \models \phi[\Sigma^h, x, s]$ and by elementarity that

(4) $D(W[x], \delta^{S^h}) \models \phi[S^W_R, x, t]$.

The same construction that gave us (3) also gives as some N_ω and v such that

(5) N_ω is a Σ^{h+k}-iterate of W above ξ, $v \subseteq Coll(\omega, < \delta^{N_\omega})$ is generic and $D(N_\omega, \delta^{N_\omega}, v) = W_2$.

Thus, $W_2 \models \phi[\Sigma^{h+k}_R, x, t_1]$ where t_1 is the image of t in N_ω. By indiscernability we get that $W_2 \models \phi[\Sigma^{h+k}_R, x, s]$. □

3.2 An upper bound for LSA − over − uB

Let $(\mathcal{P}_0, \Sigma^-), \mathcal{P}, g$ be as above. Now we show LSA − over − uB is satisfied in $\mathcal{P}[g]$. Fix a $P[g]$-generic h. We will show that

1. $L(\Sigma^{g^h}, \mathbb{R}_{g^h}) \models$ LSA and

2. $\Gamma^\infty_{g^h}$ is the Suslin co-Suslin sets of $L(\Sigma^{g^h}, \mathbb{R}_{g^h})$.

Clause 2 above is an immediate consequence of Clause 1, and the results of the previous section.

We now show clause 1. Let $(\gamma_i : i < \omega)$ be the first ω Woodin cardinals of $\mathcal{P}[g \ast h]$ and $\gamma = sup_{i<\omega}\gamma_i$. Let w_i be the corresponding consecutive windows determined by the γ_i’s. Write Λ for Σ^h, the canonical interpretation of Σ in $P[g \ast h]$. In $\mathcal{P}[g \ast h]$, let

$$\pi : \mathcal{M} \to (\mathcal{P}[g \ast h]|\gamma^+)^\#$,
be elementary and such that \mathcal{M} is countable and $\text{crt}(\pi) > |g|$. For each i, let $\delta_i = \pi^{-1}(\gamma_i)$, and $\lambda = \sup_{i<\omega} \delta_i$. Note that $\mathcal{M}|\lambda$ is closed under Λ, and λ is the supremum of the Woodin cardinals of \mathcal{M}. It follows from Proposition 2.12 that \mathcal{M} has a ν^{ω_0}-strategy acting on non-dropping trees based on the interval $[\pi^{-1}(\nu^{\omega_0}), \lambda]$ in $\mathcal{P}[g * h]$; call this strategy Ψ.

Let $k \subseteq \text{Coll}(\omega, < \lambda)$ be \mathcal{M}-generic. Let $R^*_k = \bigcup_{\xi < \lambda} R^{\mathcal{M}[k|\xi]}$ and recall the ”new” derived model of \mathcal{M} at λ

$$D^+(\mathcal{M}, \lambda, k) = L(\{A \in \varphi(R^*_k) \cap \mathcal{M}(R^*_k): L(A, R^*_k) \models \text{AD}^+\}).$$

By Woodin’s derived model theorem, cf. [48] and [65], $D^+(\mathcal{M}, \lambda, k) \models \text{AD}^+$. Again, the theory of $D^+(\mathcal{M}, \lambda, k)$ does not depend on k. When we reason about the theory of the new derived model without concerning about any particular generic, we write $D^+(\mathcal{M}, \lambda)$.

Proposition 3.5 Let $\Lambda \cap \mathcal{M}(R^*_k) \in D^+(\mathcal{M}, \lambda)$. Furthermore, in $D^+(\mathcal{M}, \lambda)$, $L(\Lambda, \mathcal{R}) \models \text{LSA}$.

Proof. First note that there is a term $\tau \in \mathcal{M}$ such that $(\mathcal{M}, \Psi, \tau)$ term captures Σ^b. More precisely, letting $i : \mathcal{M} \to \mathcal{N}$ be an iteration map according to Ψ, let l be a $< i(\lambda)$-generic over \mathcal{N}, then $\text{Code}(\Sigma^b) \cap \mathcal{N}[l] = i(\tau)$; this follows from results in Section 2 (cf. Proposition 2.16). To see that in $\mathcal{M}(R^*_k)$, $L(\Lambda, \mathcal{R}) \models \text{AD}$, suppose not. Let x be a real and A be the least $\text{OD}(\Lambda, x)$ counterexample to AD in $L(\Lambda, \mathcal{R})$. Also, by minimizing the ordinal parameters, we may assume A is definable from x in $L(\Lambda, \mathcal{R})$. Using the term τ for Λ, we can easily define a term σ over $\mathcal{M}[x]$ such that $(\mathcal{M}[x], \Psi, \sigma)$ term captures A. Applying Neeman’s theorem (cf. [29]), we get that A is determined. Finally, let $i : \mathcal{M}[x] \to \mathcal{N}$ be a $\mathcal{R}^{\mathcal{P}[g * h]}$-genericity iteration according to Ψ. By the argument just given, in $\mathcal{N}(\mathcal{R}^{g * h})$, A is determined. So $\mathcal{M}(R^*_k) \models \sigma_k$ is determined. Contradiction.

If LSA fails in $L(\Lambda, \mathcal{R})$, then Λ is Suslin co-Suslin in $D^+(\mathcal{M}, \lambda)$, and the argument in Proposition 2.20 gives a contradiction. The point is that in $D^+(\mathcal{M}, \lambda)$, the Wadge ordinal of $\Gamma^b(\mathcal{P}_0, \Lambda)$ is a limit of Suslin cardinals, and the failure of LSA means that there is a larger Suslin cardinal above the Wadge ordinal of $\Gamma^b(\mathcal{P}_0, \Lambda)$. So Λ is Suslin co-Suslin in $D^+(\mathcal{M}, \lambda)$. Now we can run the argument in Proposition 2.20 to obtain a contradiction. Hence in $D^+(\mathcal{M}, \lambda)$,

$$L(\Lambda, \mathcal{R}) \models \text{LSA}.$$ \hspace{1cm} (3)

\hspace{1cm} 49Note that there is a generic $k' \subseteq \text{Coll}(\omega, < \lambda)$ for $\mathcal{M}[x]$ such that $R^*_k = R^*_{k'}$.

\hspace{1cm} 50In $\mathcal{P}[g * h]$, let $k \subseteq \text{Coll}(\omega, \mathcal{R})$ be generic and let $(x_i: i < \omega)$ be the generic enumeration of the reals. The iteration i is the direct limit of the system $(\mathcal{M}_m, i_m: m < \omega)$ where $\mathcal{M}_0 = \mathcal{M}[x]$, for each m, \hspace{0.5cm} $i_{m, m+1}: \mathcal{M}_m \to \mathcal{M}_{m+1}$ is the x_m-genericity iteration that makes x_m generic at the image of δ_m.

53
Now perform a $\mathbb{R}^{P[g,h]}$-genericity iteration according to Ψ at λ, more precisely, there is an iteration $i : \mathcal{M} \to \mathcal{N}$ according to Ψ such that letting $l \subseteq \text{Coll}(\omega, < i(\lambda))$ be \mathcal{N}-generic, letting $R^* l = \bigcup_{\xi < i(\lambda)} R^N l|\xi$, we get

$$R^{P[g,h]} = R^* l$$

and

$$L(\Sigma^{g,h}, \mathbb{R}^{P[g,h]}) \subseteq D^+(\mathcal{N}, i(\lambda), l),$$

hence by (3),

$$L(\Sigma^{g,h}, \mathbb{R}^{P[g,h]}) \models \text{LSA}.$$

This completes the proof of clause 1 above and also the proof of LSA – over – uB in $P[g]$.

3.3 An upper bound for Tower Sealing

Let $(P_0, \Sigma^{-}), P, g$ be as before. We prove clause (2) of Tower Sealing holds in $P[g]$. Clause (1) has already been established by the previous sections. Let h be a set generic over $P[g]$ and let δ be Woodin in $P[g,h] = \text{def} W$. Let $G \subseteq Q_{<\delta}$ be W-generic (the argument for $P_{<\delta}$ is the same) and $j : W \to M \subset W[G]$ be the generic elementary embedding induced by G.

Let Λ be the canonical interpretation of Σ^{-} in W and Λ^G be the canonical interpretation of Λ in $W[G]$ (considered as the short-tree strategy of P_0 acting on countable trees). Now, by the fact that M is closed under countable sequences in $W[G]$ and the way Λ^G is defined (using generic interpretability)

$$\Lambda^G = j(\Lambda).$$

Hence $\Lambda^G \in M$.

By Lemma 3.2,

\[^{51}\text{Let } T \text{ be countable and according to both } j(\Lambda) \text{ and } \Lambda^G. \text{ Note that } T \in M \cap W[G]. \text{ Suppose } T \text{ is ambiguous (the case } T \text{ is unambiguous is similar). One gets that in } W[G], Q(\Lambda^G(T), T) \text{ exists and is authenticated by } \bar{C}, \text{ a fully backgrounded authenticated construction in } W \text{ where extenders have critical point } \gamma > \delta; \text{ note that we can take } \bar{C} \in W. \text{ This implies that } Q(\Lambda^G(T), T) \text{ is authenticated by } j(\bar{C}) \in M; \text{ and } Q(j(\Lambda)(T), T) \text{ is also authenticated by } j(\bar{C}) \text{ in } M. \text{ The details are very similar to the proof of Proposition 2.16. So } j(\Lambda)(T) = \Lambda^G(T).\]
\[(\Gamma^\infty)^{W[G]} = \Gamma^b(\mathcal{P}_0, \Lambda^G).\]

By elementarity, the fact that \((\Gamma^\infty)^W = \Gamma^b(\mathcal{P}_0, \Lambda), 4\), and Lemma 3.2,

\[j((\Lambda^\infty)^W) = \Gamma^b(\mathcal{P}_0, \Lambda^G).\]

So indeed, \((\Gamma^\infty)^{W[G]} = j((\Lambda^\infty)^W)\) as desired.

Remark 3.6 Another proof that clause (2) is the following. We give a sketch: by results of [39], \(\Lambda^G \in L(\pi^b_{\mathcal{P}_0, \infty}[\mathcal{P}_0], \mathcal{H}, (\Gamma^\infty)^{W[G]})\). Here working in \(W[G]\), let \(\mathcal{H}^-\) be the direct limit of hod pairs \((\mathcal{R}, \Delta) \in L(\Gamma^\infty)\) such that in \(L(\Gamma^\infty), \Delta\) is fullness preserving, has hull and branch condensation. \(|\mathcal{H}^-| = V^{HOD}_\Theta\) in \(L(\Gamma^\infty)\). Let \(\mathcal{H} = \bigcup\{\mathcal{M} : \mathcal{H}^- \prec \mathcal{M}, \mathcal{M}\) is a sound, hybrid countably iterable premouse such that \(\rho_\omega(\mathcal{M}) \leq o(\mathcal{H}^-)\}\). For each \(\mathcal{M} \prec \mathcal{H}\) as above, for every \(\mathcal{N}\) countably transitive such that \(\mathcal{N}\) is embeddable into \(\mathcal{M}\), \(\mathcal{N}\) has an \(\omega_1\)-strategy in \(\mathcal{L}(\mathcal{H}^-)\).

If \((\Gamma^\infty)^{W[G]} \neq j((\Gamma^\infty)^W)\), then suppose the former is a strict Wadge initial segment of the latter (the other case is handled similarly). So the model

\[L(\pi^b_{\mathcal{P}_0, \infty}[\mathcal{P}_0], \mathcal{H}, (\Gamma^\infty)^{W[G]}) \in M\]

as \(M\) is closed under \(\omega\)-sequences in \(W[G]\). In fact, we get that \(\Lambda^G \in j((\Gamma^\infty)^W)\).

By Generation of Mousefull Pointclasses (applied in \(L(j((\Gamma^\infty)^W))\)) and a comparison argument as in Lemma 2.20, there is a (maximal) \(\Lambda^G\)-iterate \(S\) of \(\mathcal{P}_0\) such that \(S\) has an iteration strategy \(\Psi\) such that

- \(\Psi^{stc} = (\Lambda^G)^S\),
- \(\Gamma^b(S, \Psi) = \Gamma(\mathcal{P}_0, \Lambda^G)\),
- \(\Psi \in j((\Gamma^\infty)^W)\).

By elementarity, the existence of \(S, \Psi\) holds in \(L((\Gamma^\infty)^W)\). This contradicts the fact that \(j(\Lambda) \notin (\Gamma^\infty)^W\).

4 Basic core model induction

The notation introduced in the section will be used throughout this paper. It will be wise to refer back to this section for clarifications. From this point on the paper is devoted to proving that both Sealing and LSA – over – uB imply the existence of a (possibly class size) excellent hybrid premouse. As we have already shown
that a forcing extension of an excellent hybrid premouse satisfies both Sealing and LSA − over − uB, this will complete the proof of Theorem 1.4.

We will accomplish our goal by considering HOD of \(L(\Gamma^\infty, \mathbb{R}) \) and showing that, in some sense, it reaches an excellent hybrid premouse. Our first step towards this goal is to show that \(\Theta \) is a limit point of the Solovay sequence of \(L(\Gamma^\infty, \mathbb{R}) \).

Proposition 4.1 Assume there are unboundedly many Woodin cardinals. Furthermore, assume either Sealing, or Tower Sealing, or LSA − over − uB. Then for all set generic \(g \), the following holds in \(V[g] \).

1. \(\wp(\mathbb{R}) \cap L(\Gamma^\infty, \mathbb{R}) = \Gamma^\infty \).
2. \(L(\Gamma^\infty, \mathbb{R}) \models AD_{\mathbb{R}} \).

Proof. Towards a contradiction assume that \(L(\Gamma^\infty, \mathbb{R}) \models \neg AD_{\mathbb{R}} \). By a result of Steel ([48, Theorem 4.3]), every set in \(\Gamma^\infty \) has a scale in \(\Gamma^\infty \). Notice then that clause 1 implies clause 2. This is because given clause 1, \(L(\Gamma^\infty, \mathbb{R}) \) satisfies that every set has a scale, and therefore, it satisfies \(AD_{\mathbb{R}} \).\(^{52}\)

It is then enough to show that clause 1 holds. It trivially follows from Sealing or Tower Sealing. To see that it also follows from LSA − over − uB, fix a set \(A \subseteq \mathbb{R} \) such that \(\Gamma^\infty \) is the set of Suslin, co-Suslin sets of \(L(A, \mathbb{R}) \) and \(L(A, \mathbb{R}) \models LSA \). It now follows that if \(\kappa \) is the largest Suslin cardinal of \(L(A, \mathbb{R}) \) then, in \(L(A, \mathbb{R}) \), \(\Gamma^\infty \) is the set of reals whose Wadge rank is \(< \kappa \). Since \(\kappa \) is on the Solovay sequence of \(L(A, \mathbb{R}) \), \(\Gamma^\infty = L(\Gamma^\infty) \cap \wp(\mathbb{R}) \). Therefore clause 1 follows. \(\square \)

For the rest of this paper we write \(\Gamma^\infty \models \Omega \ AD_{\mathbb{R}} \) to mean that clause 1 and 2 above hold in all generic extensions. \(\Omega \) here is a reference to Woodin’s \(\Omega \)-logic. We develop the notations below under \(\Gamma^\infty \models \Omega \ AD_{\mathbb{R}} \).

Suppose \(\mu \) is a cardinal. Let \(g \subset Col(\omega, < \mu) \) be \(V \)-generic. Working in \(V \), we say that a pair \((\mathcal{M}, \Sigma) \) is a hod pair at \(\mu \) if

1. \(\mathcal{M} \in V_\mu \),
2. \(\Sigma \) is a \((\mu, \mu) \)-iteration strategy of \(\mathcal{M} \) that is in \(\Gamma^\infty \) in \(V^{Coll(\omega, \|\mathcal{M}\|)} \) and is positional, commuting and has branch condensation, and
3. \(\Sigma \) is fullness preserving with respect to mice with \(\Gamma^\infty \)-iteration strategy.

\(^{52} \)Recall that Martin and Woodin showed that \(AD_{\mathbb{R}} \) is equivalent to the statement that every set of reals has a scale. See [26].
Let \mathcal{F} be the set of hod pairs at μ. It is shown in [39] that hod mice at μ can be compared (see [39, Chapter 4.6 and 4.10]). More precisely, given any two hod pairs (\mathcal{M}, Σ) and (\mathcal{N}, Λ) in \mathcal{F}, there is a hod pair $(S, \Psi) \in \mathcal{F}$ such that for some $\mathcal{M}^* \leq_{\text{hod}} S$ and $\mathcal{N}^* \leq_{\text{hod}} S$.

1. \mathcal{M}^* is a Σ-iterate of \mathcal{M} such that the main branch of \mathcal{M}-to-\mathcal{M}^* iteration doesn’t drop,

2. \mathcal{N}^* is a Λ-iterate of \mathcal{N} such that the main branch of \mathcal{N}-to-\mathcal{N}^* iteration doesn’t drop,

3. $\Sigma_{\mathcal{M}^*} = \Psi_{\mathcal{M}^*}$ and $\Lambda_{\mathcal{N}^*} = \Psi_{\mathcal{N}^*}$ and

4. either $S = \mathcal{M}^*$ or $S = \mathcal{N}^*$.

Working in $V[g]$, let \mathcal{F}^+ be the set of all hod pairs (\mathcal{M}, Σ) such that \mathcal{M} is countable and Σ is an $(\omega_1, \omega_1 + 1)$-strategy of \mathcal{M} that is Γ^∞-fullness preserving, positional, commuting, has branch condensation, and $\Sigma \cap \text{HC} \in \Gamma^\infty$.

Because any two hod pairs in \mathcal{F}^+ can be compared, \mathcal{F} covers \mathcal{F}^+. More precisely, for each hod pair $(\mathcal{M}, \Sigma) \in \mathcal{F}^+$ there is Σ-iterate \mathcal{N} of \mathcal{M} such that the \mathcal{M}-to-\mathcal{N} iteration doesn’t drop on its main branch, $(\Sigma_\mathcal{N} \upharpoonright V) \in V$ and $\Sigma_\mathcal{N}$ is the unique extension of $(\Sigma_\mathcal{N} \upharpoonright V)$ to $V[g]$.

Given any hod pair (\mathcal{M}, Σ), let $I(\mathcal{M}, \Sigma)$ be the set of iterates \mathcal{N} of \mathcal{M} by Σ such that the main branch of \mathcal{M}-to-\mathcal{N} doesn’t drop. Let $X \subseteq I(\mathcal{M}, \Sigma)$ be a directed set, i.e., if $\mathcal{N}, \mathcal{P} \in I(\mathcal{M}, \Sigma) \cap X$ then there is $\mathcal{R} \in X \cap I(\mathcal{M}, \Sigma)$ such that \mathcal{R} is a $\Sigma_{\mathcal{N}}$-iterate of \mathcal{N} and a $\Sigma_{\mathcal{P}}$-iterate of \mathcal{R}. We then let $\mathcal{M}_\infty(\mathcal{M}, \Sigma, X)$ be the direct limit of all iterates of \mathcal{M} by Σ that are in X. Usually X will be clear from context and we will omit it.

Working in $V[g]$, let $\mathbb{R}_g = \mathbb{R}^{V[g]}$. Let \mathcal{H}^- be the direct limit of hod pairs in \mathcal{F}^+. Because \mathcal{F} covers \mathcal{F}^+, we also have that \mathcal{H}^- is the direct limit of hod pairs in \mathcal{F}.

Fix $(\mathcal{M}, \Sigma) \in \mathcal{F}^+$ such that $\mathcal{M}_\infty(\mathcal{M}, \Sigma) \overset{\text{def}}{=} \mathcal{Q} \leq_{\text{hod}} \mathcal{H}^-$. We let $\Psi_\mathcal{Q} = \Sigma_\mathcal{Q}$. $\Psi_\mathcal{Q}$ only depends on \mathcal{Q} and does not depend on any particular choice of $(\mathcal{M}, \Sigma) \in \mathcal{F}$. Let $(\mathcal{H}^-(\alpha) : \alpha < \lambda)$ be the layers of \mathcal{H}^- (in the sense of [39] and [33]) and let Ψ_α be the strategy of $\mathcal{H}(\alpha)$ for each $\alpha < \lambda$. Ψ_α is the tail strategy $\Sigma_\mathcal{Q}$ for $\mathcal{Q} = \mathcal{M}_\infty(\mathcal{M}, \Sigma)$ for any $(\mathcal{M}, \Sigma) \in \mathcal{F}^+$ such that $\mathcal{M}_\infty(\mathcal{M}, \Sigma) = \mathcal{H}(\alpha)$. We now set

\footnote{In [39], $\mathbb{P} = \text{Col}(\omega, \omega_2)$ but in our case, since μ is measurable, all results in [39, Chapter 12] hold in our context. The point is that we can work with stationary many hulls $X < H_\xi$ for some $\xi >> \Omega$ such that $X \cap \mu = \gamma$ is an inaccessible cardinal, $X^{<\gamma} \subseteq X$, and their corresponding collapse map $\pi_X : M_X \rightarrow H_\xi$. Or equivalently, we work with the ultrapower embedding $j_U : V \rightarrow \text{Ult}(V,U)$, noting that j_U lifts to a generic elementary embedding on $V[G]$. By results in [39], Σ has strong condensation and is strongly Δ-fullness preserving.}

57
\[\Psi = \text{def } \Psi_\mu = \text{def } \bigoplus_{\alpha < \lambda^+} \Psi_\alpha. \]

Definition 4.2 Suppose \(x \) is a set in \(V(\mathbb{R}_g) \) and \(\Phi \) is an iteration strategy with hull condensation. Working in \(V(\mathbb{R}^*) \), let \(Lp^{\text{cuB},\Psi}(x) \) be the union of all sound \(\Phi \)-mice \(\mathcal{M} \) over \(x \) that project to \(x \) and whenever \(\pi : \mathcal{N} \to \mathcal{M} \) is elementary, \(\mathcal{N} \) is countable, transitive then \(\mathcal{N} \) has a universally Baire iteration strategy.

Continuing, we set

1. \(\mathcal{H} = Lp^{\text{cuB},\Psi}(\mathcal{H}^-) \) (note that \(\mathcal{H} \in V) \),
2. \(\Theta = o(\mathcal{H}^-) \),
3. \((\theta_\alpha : \alpha < \lambda)\) as the Solovay Sequence of \(\Gamma^\infty \). Note that \(\Theta = \sup_\alpha \theta_\alpha \) and \(\theta_\alpha = \delta^{\mathcal{H}^-}(\alpha) \) for each \(\alpha < \lambda \).

We note that all objects defined in this section up to this point depend on \(\mu \). To stress this, we will use \(\mu \) as subscript. Thus, we will write, if needed, \(\Psi_\mu \) or \(\mathcal{H}_\mu \) for \(\Psi \) and \(\mathcal{H} \) respectively. We will refer to the objects introduced above, e.g. \(\mathcal{H}_\mu, \Psi_\mu \) and etc, as the CMI objects at \(\mu \).

Given a hybrid strategy mouse \(\mathcal{Q} \) and an iteration strategy \(\Lambda \) for \(\mathcal{Q} \), we say \(\Lambda \) is potentially-universally Baire if whenever \(g \subseteq \text{Coll}(\omega, \mathcal{Q}) \) is generic there is a unique \(\Phi \in V[g] \) such that

1. \(\Phi \upharpoonright V = \Lambda \),
2. in \(V[g] \), \(\Phi \) is a uB iteration strategy for \(\mathcal{Q} \).

Similarly we can define potentially-\(\eta \)-uB iteration strategies.

Definition 4.3 Suppose \(\mu \) is a cardinal and \((\mathcal{Q}, \Lambda)\) is such that \(\mathcal{Q} \in H_{\mu^+} \), \(\mathcal{Q} \) is a hybrid strategy mouse and \(\Lambda \) is a potentially-uB strategy for \(\mathcal{Q} \). Suppose \(X \in H_{\mu^+} \). We then let \(Lp^{\text{puB},\Lambda}(X) \) be the union of all sound \(\Lambda \)-mice over \(X \) that project to \(X \) and have a potentially-uB iteration strategies.

Clearly \(Lp^{\text{puB},\Lambda}(X) \subseteq Lp^{\text{cuB},\Lambda}(X) \). In many core model induction applications it is important to show that in fact \(Lp^{\text{puB},\Lambda}(X) = Lp^{\text{cuB},\Lambda}(X) \). The reason this fact is important is that the first is the stack that we can prove is computed by the maximal model of determinacy containing \(X \) after we collapse \(X \) to be countable while if \(\mathcal{Q}, X \) are already countable, the \(OD(\Lambda, \mathcal{Q}, X) \) information inside the maximal model is captured by \(Lp^{\text{cuB},\Lambda}(X) \). This is because for countable \(\mathcal{Q}, X \), \(Lp^{\text{cuB},\Lambda}(X) = Lp^{\mu B,\Lambda}(X) \) where the mice appearing in the latter stack have universally Baire strategies. The equality \(Lp^{\text{puB},\Lambda}(X) = Lp^{\text{cuB},\Lambda}(X) \) is important for covering type arguments that appear in the proof of Proposition 5.8.
5 \(L^\text{cuB} \) and \(L^\text{buB} \) operators

The following is the main result of this section, and it is the primary way we will translate strength from our hypothesis over to large cardinals. If \(\mu\) is such that \(\text{Hom}^* = \Gamma^\infty_g\) for any \(g \subseteq \text{Coll}(\omega, < \mu)\), then we say that \(\mu\) stabilizes \(uB\).

For each inaccessible cardinal \(\mu\) let \(A_\mu \subseteq \mu\) be a set that codes \(V_\mu\). We then say that \(X \prec H^{\mu+}\) captures \(L^\text{cuB}\), \(\Psi_\mu(A_\mu)\) if \(L^\text{cuB}\), \(\Psi_\mu(A_\mu)\) \(\in X\) and letting \(\pi_X : M_X \to H^{\mu+}\) be the uncollapse map and letting \(\Lambda\) be the \(\pi\)-pullback of \(\Psi_\mu\),

\[
\pi_X^{-1}(L^\text{cuB}\Psi_\mu(A_\mu)) = L^\text{cuB}\Lambda(\pi_X^{-1}(A_\mu)).
\]

Theorem 5.1 Suppose there is a proper class of Woodin cardinals and a stationary class of measurable cardinals that are limit of Woodin cardinals. Suppose further that \(\Gamma^\infty \models \Omega \text{AD}_R\). There is then a stationary class \(S\) of measurable cardinals that are limits of Woodin cardinals, a proper class \(S_0 \subseteq S\), and a regular cardinal \(\nu \geq \omega_1\) such that the following holds:

1. for any \(\mu \in S\), \(|H_\mu| < \mu^+,\) \(\text{cf}(\text{Ord} \cap H_\mu) < \mu\), and \(\text{cf}(\text{Ord} \cap L^\text{cuB}\Psi_\mu(A_\mu)) < \mu\);
2. for any \(\mu \in S_0\), \(\mu\) stabilizes \(uB\), \(\text{cf}(\text{Ord} \cap H_\mu) < \nu\), and \(\text{cf}(\text{Ord} \cap L^\text{cuB}\Psi_\mu(A_\mu)) < \nu\);
3. for any \(\mu \in S_0\), there is \(Y_\mu \in \wp(\nu)(H^{\mu+})\) such that \(A_\mu \in Y_\mu\) and whenever \(X \prec H^{\mu+}\) is of size \(< \mu\), is \(\nu\)-closed and \(Y_\mu \subseteq X\), \(X\) captures \(L^\text{cuB}\Psi_\mu(A_\mu)\).

We emphasize that the arguments in this section (and in this paper) are carried out entirely in \(\text{ZFC}\), though it may appear that we are working with proper classes. See Remark 5.9 for a more detailed discussion and summary. First, we prove a useful lemma, pointed out to us by Ralf Schindler. Below, by “class”, we of course mean “definable class”.

Lemma 5.2 (ZFC) Suppose \(S\) is a stationary class of ordinals. Suppose \(f : S \to \text{Ord}\) is regressive, i.e. \(f(\alpha) < \alpha\) for all \(\alpha \in S\). There is an ordinal \(\nu\) and a proper class \(S_0 \subseteq S\) such that \(f[S_0] = \{\nu\}\).

Proof. Suppose not. For each \(\nu\), let \(\alpha_\nu = \sup\{\alpha : f(\alpha) = \nu\}\) if \(\nu \in \text{rng}(f)\) and \(\nu + 1\) otherwise. \(\alpha_\nu\) exists by the Axiom of Replacement. Let \(g : \text{Ord} \to \text{Ord}\) be the function: \(\nu \mapsto \alpha_\nu\); hence \(g(\nu) > \nu\) for all \(\nu\). Let \(C = \{\mu : g[\mu] \subseteq \mu\}\). So \(C\) is a club class. Let \(\alpha \in \text{lim}(C) \cap S\). We may assume for unboundedly many \(\beta < \alpha\), \(\beta \in \text{rng}(f)\). Then we easily get that \(f(\alpha)\) is not \(< \alpha\). Contradiction. \(\square\)

Clause 1 of Theorem 5.1 follows easily from the above lemma.
Proposition 5.3 Suppose there is a proper class of Woodin cardinals and S is a stationary class of inaccessible cardinals that are limit of Woodin cardinals. Then there is a proper class $S^* \subseteq S$ such that whenever $\mu \in S^*$ and $g \subseteq \text{Coll}(\omega, < \mu)$ is V-generic, in $V[g]$, $\text{Hom}_g^* = \Gamma^\infty$.

Proof. Clearly $\Gamma^\infty \subseteq \text{Hom}_g^*$. Suppose then the claim is false. We then have a club C such that whenever $\mu \in C \cap S$ and $g \subseteq \text{Coll}(\omega, < \mu)$, $\Gamma^\infty \neq \text{Hom}_g^*$. For each $\mu \in C \cap S$ let $\eta_\mu < \mu$ be least such that whenever $g \subseteq \text{Coll}(\omega, \eta_\mu)$, there are μ-complementing trees $(T,U) \in V[g]$ with the property that $p[T]$ is not uB in $V[g][h]$ for any $V[g]$-generic $h \subseteq \text{Coll}(\omega, < \mu)$. By Lemma 5.2, we then have a proper class $S_0 \subseteq S$ such that for every $\mu_0 < \mu_1 \in S_0$, $\eta_{\mu_0} = \eta_{\mu_1}$. Let η be this common value of η_μ for $\mu \in S^*$ and $g \subseteq \text{Coll}(\omega, \eta)$ be V-generic. For each $\mu \in S_0$ we have a pair $(T_\mu, U_\mu) \in V[g]$ that represents a μ-uB set that is not uB. A simple counting argument then shows that for a proper class $S^* \subseteq S_0$ whenever $\mu_0, \mu_1 \in S^*$, $V[g] \models p[T_{\mu_0}] = p[T_{\mu_1}]$. Letting $A = (p[T_\mu])^{V[g]}$ for some $\mu \in S^*$, we get a contradiction as A is uB in $V[g]$. \qed

What follows is a sequence of propositions that collectively imply the remaining clauses of Theorem 5.1. We start by establishing that the two stacks are almost the same.

Proposition 5.4 Suppose $\mu, (Q, \Lambda), X$ are as in Definition 4.3 and suppose μ is in addition a measurable cardinal stabilizing Γ^∞. Let $j : V \to M$ be an embedding witnessing the measurability of μ. Then $Lp^{\text{caB,}\Lambda}(X) = (Lp^{\text{puB,}\Lambda}(X))^M$.

Proof. Let $j : V \to M$ be an embedding witnessing the measurability of μ. Let $\mathcal{M} \subseteq Lp^{\text{caB,}\Lambda}(X)$ be such that $\rho(\mathcal{M}) = X$. Let $h \subseteq \text{Coll}(\omega, < j(\mu))$ be generic. Consider $j(\mathcal{M})$. In $M[h]$, \mathcal{M}, as it embeds into $j(\mathcal{M})$, has a uB strategy. It follows that \mathcal{M} has a potentially-uB strategy in M, and hence, $\mathcal{M} \subseteq (Lp^{\text{puB,}\Lambda}(X))^M$. Conversely, if $\mathcal{M} \subseteq (Lp^{\text{puB,}\Lambda}(X))^M$ is such that $\rho(\mathcal{M}) = X$ then in M, \mathcal{M} has a potentially-uB strategy, and hence, in V, any countable $\pi : \mathcal{M}^* \to \mathcal{M}$ has a μ-uB-strategy. As μ-stabilizes uB, we have $\mathcal{M} \subseteq Lp^{\text{caB,}\Lambda}(X)$. \qed

The next three propositions are rather important. Similar propositions hide behind any successful core model induction argument.

Proposition 5.5 Suppose there are unboundedly many Woodin cardinals, μ is an inaccessible cardinal and $\Gamma^\infty \models_{\omega} \text{AD}_R$. Suppose further that Λ is a potentially-uB iteration strategy for some $Q \in H_{\mu^+}$ and $X \in H_{\mu^+}$. Let $\mathcal{M} = Lp^{\text{puB,}\Lambda}(X)$. Then $|\mathcal{M}| < \mu^+$.
Proof. Suppose \(\text{Ord} \cap \mathcal{M} = \mu^+ \). Let \(g \subseteq \text{Coll}(\omega, \mu) \) be generic. Then
\[
(L_{p_{\text{cuB}}}(\Lambda(X)))^V = (L_{p_{\text{cuB}}}(\Lambda(X)))^{V[g]}.
\]
Moreover, \((L_{p_{\text{cuB}}}(\Lambda(X)))^{V[g]} \in L(\Gamma_\infty, R_g) \). Hence, \(L(\Gamma_\infty, R_g) \models \text{“there is an } \omega_1 \text{-sequence of reals”} \). This contradicts the fact that \(L(\Gamma_\infty, R_g) \models \text{AD}^+ \). \(\square \)

Corollary 5.6 Suppose there are unboundedly many Woodin cardinals, \(\mu \) is a measurable limit of Woodin cardinals that stabilizes \(\text{uB} \) and \(\Gamma_\infty \models \text{AD}_R \). Suppose further that \(\Lambda \) is a potentially-\(\text{uB} \) iteration strategy for some \(Q \in H_{\mu^+} \) and \(X \in H_{\mu^+} \). Let \(\mathcal{M} = L_{p_{\text{cuB}}}(\Lambda(X)) \). Then \(|\mathcal{M}| < \mu \) and \(\text{cf}(\text{Ord} \cap \mathcal{M}) < \mu \).

Proof. Fix \(j : V \to M \) witnessing the measurability of \(\mu \). It follows from Proposition 5.4 that \(\mathcal{M} = (L_{p_{\text{cuB}}}(\Lambda(X)))^M \). Applying Proposition 5.5 in \(M \) we get that \(|M| < \mu \).

Assume next that \(\text{cf}(\text{Ord} \cap \mathcal{M}) = \mu \). Let \(\eta = \text{Ord} \cap X \) and let \(\bar{C} \) be the \(\Box(\eta) \)-sequence of \(\mathcal{M} \). Because \(\mu \) is measurable, we have that \(\bar{C} \) is threadable. To see there is a thread \(D \), note that letting \(\xi = \text{sup}_{\alpha < \mu} j[\alpha], \xi < j(\mu) \). This means \(\text{sup} j[\eta] = \gamma < j(\eta) \). Let \(E = j(\bar{C}) \), and \(D = j^{-1}[E] \). Then \(D \) is a thread through \(\bar{C} \).

This implies that there is a \(\Lambda \)-mouse \(\mathcal{N} \) extending \(\mathcal{M} \) such that \(\rho(\mathcal{N}) = \eta \) and every \(< \mu \)-submodel of \(\mathcal{N} \) embeds into some \(\mathcal{N}^* \preceq \mathcal{M} \). It follows that \(\mathcal{N} \preceq L_{p_{\text{cuB}}}(\Lambda(X)). \) \(\square \)

Corollary 5.7 Assume there is a class of Woodin cardinals and let \(\mu \) be a measurable limit of Woodin cardinals that stabilizes \(\text{uB} \). Assume \(\Gamma_\infty \models \text{AD}_R \). Let \(\mathcal{H}^- , \mathcal{H} \) etc. be defined relative to \(\mu \) as in Section 4. Set
\[
\xi = \max(\text{cf}^V(\text{Ord} \cap \mathcal{H}), \text{cf}^V(\text{Ord} \cap L_{p_{\text{cuB}}}(\Psi, A_\mu))).
\]
Then \(\xi < \mu \).

Proof. We show that \(\text{cf}^V(\text{Ord} \cap \mathcal{H}) < \mu \). The second inequality is very similar. Let \(g \subseteq \text{Coll}(\omega, < \mu) \). Notice that \(|\Gamma_\infty|^{|V[g]|} = \kappa_1 = \mu \). It follows that \(|\Theta| < \mu^+ \) (recall that \(\varphi(R_g) \cap L(\Gamma_\infty, R_g) = \Gamma_\infty \). The fact that \(|\mathcal{H}|^V < \mu^+ \) follows from Corollary 5.6. The fact that \(\text{cf}^V(\text{Ord} \cap \mathcal{H}) < \mu \) follows from the fact that \(\Box(\mu) \) fails while letting

\(^{54}\)This is a consequence of the proof of \(\Box \). \(\mathcal{N} \) is a direct limit of \((\mathcal{M}_\alpha, j_{\alpha, \beta} : \alpha < \beta, \alpha, \beta \in D) \) where \(D \subseteq \text{Ord} \cap \mathcal{M} \) is cofinal in \(\text{Ord} \cap \mathcal{M} \) and \(\mathcal{M}_\alpha \preceq \mathcal{M} \).
\(\zeta = \text{Ord} \cap \mathcal{H}, \mathcal{H} \) has a \(\square(\zeta) \)-sequence. Let \(\tilde{C} \) be the \(\square(\zeta) \)-sequence constructed via the proof of \(\square \) in \(\mathcal{H} \)55. If \(\text{cf}(\zeta) = \mu \) then \(\tilde{C} \) has a thread \(D \) by measurability of \(\mu \); the existence of \(D \) follows by an argument similar to that of Corollary 5.6. Because of the way \(\tilde{C} \) is defined, \(D \) indexes a sequence of models \((\mathcal{M}_\alpha : \alpha \in D) \) such that

1. for every \(\alpha \in D \), \(\mathcal{M}_\alpha \preceq \mathcal{H} \) and \(\rho(\mathcal{M}_\alpha) = \Theta \), and
2. for \(\alpha < \beta, \alpha, \beta \in D \), there is an embedding \(\pi_{\alpha,\beta} : \mathcal{M}_\alpha \rightarrow \mathcal{M}_\beta \).

Let \(\mathcal{M} \) be the direct limit along \((\mathcal{M}_\alpha, \pi_{\alpha,\beta} : \alpha \in D) \). Then every countable submodel of \(\mathcal{M} \) embeds into some \(\mathcal{M}_\alpha \), implying that \(\mathcal{M} \preceq \mathcal{H} \). However, as \(D \) is a thread, \(\mathcal{H} \triangleleft \mathcal{M} \), contradiction.

The next proposition shows that sufficiently closed Skolem hulls of \(\text{Lp}^{\text{cuB}} \) operator condense.

Proposition 5.8 Suppose there is a proper class of Woodin cardinals, \(\mu \) is a measurable limit of Woodin cardinals stabilizing \(uB \) and \(\Gamma^\infty \models \text{AD}_\mathbb{R} \). There is then \(\nu < \mu \) and \(Y_0 \in \wp(\mathcal{H}_\mu^+) \) such that \(A_\mu \in Y_0 \) and for any \(X < \mathcal{H}_\nu^+ \) of size \(< \mu \) that is closed under \(\nu \)-sequences and \(Y_0 \subseteq X \), letting \(\pi_X : M_X \rightarrow H_\nu^+ \) be the uncollapse map and letting \(\Lambda \) be the \(\pi \)-pullback of \(\Psi \),

\[
\pi_X^{-1}(\text{Lp}^{\text{cuB},\Psi}(A_\mu)) = \text{Lp}^{\text{cuB},\Lambda}(\pi_X^{-1}(A_\mu)).
\]

Proof. Towards a contradiction, assume not. Write \(A = A_\mu \). Let \((\lambda_\alpha, X_\alpha : \alpha < \mu) \) be a sequence of counterexamples with

1. \((\lambda_\alpha : \alpha < \mu) \) increasing and cofinal in \(\mu \).
2. \(|X_\alpha| < \mu \)
3. \(X_\alpha \) is transitive below \(\mu \) and \(X_\alpha \cap \mu = \lambda_\alpha \).
4. \(\beta \cup \{A_\mu\} \cup (X_\alpha : \alpha < \beta) \subseteq X_\beta \) for all \(\alpha < \beta < \mu \).
5. \(M_{X_\alpha} \) closed under \(< \lambda_\alpha \)-sequences.
6. (using Corollary 5.7) \(\text{sup}(X_\alpha \cap \text{Ord} \cap \text{Lp}^{\text{cuB},\Psi}(A)) = \text{Ord} \cap \text{Lp}^{\text{cuB},\Psi}(A) \).

55Notice that this is the easy version of the proof of square, the construction of [10] is all we need.
Write π_α for π_{X_α} and $\Lambda_\alpha = (\pi_\alpha \text{-pullback of } \Psi)$. Let $M_\alpha \leq Lp^{cuB, A_\alpha}(\pi_\alpha^{-1}(A))$ be the least such that $\pi_\alpha^{-1}(Lp^{cuB, \Psi}(A)) \triangleleft M_\alpha$ and M_α projects to $\pi^{-1}_\alpha(\mu)$. Let $W_\alpha = \pi_\alpha^{-1}(Lp^{cuB, \Psi}(A))$ and $A_\alpha = \pi_\alpha^{-1}(A)$. Let M_α be the transitive collapse of X_α, and let $\sigma_{\alpha, \beta} : M_\alpha \rightarrow M_\beta$ be the natural maps. We write $\sigma_{\alpha, \beta}(M_\alpha)$ for $Ult(M_\alpha, E)$ where E is the $(\lambda_\alpha, \lambda_\beta)$-extender derived from $\sigma_{\alpha, \beta}$. For each $\alpha < \beta$,

$$W_\alpha \triangleleft \sigma_{\alpha, \beta}(M_\alpha).$$

Notice that $\sigma_{\alpha, \beta}(M_\alpha)$ is countably iterable in V and this is enough to compare M_β and $\sigma_{\alpha, \beta}(M_\alpha)$. It then follows from minimality of M_β that

$$M_\beta \leq \sigma_{\alpha, \beta}(M_\alpha).$$

We then have that for some α_0, for any $\alpha_0 \leq \alpha < \beta$, $M_\beta = \sigma_{\alpha, \beta}(M_\alpha)$. Otherwise, we easily get an ω-sequence of strictly decreasing ordinals.

Let $M = \pi_{\alpha_0}(M_{\alpha_0})$. Let $g \subseteq Coll(\omega, < \mu)$ be V-generic and $R^* = R[\nu \upharpoonright g]$. We now have that in $V(R^*)$, all countable submodels of M have a uB-strategy as any such countable submodel can be embedded into some M_β for $\beta \in [\alpha_0, \mu)$. So $M \triangleleft Lp^{\Psi, cuB}(A)$ and hence $M_{\alpha_0} \triangleleft \pi_{\alpha_0}^{-1}(Lp^{cuB, \Psi}(A))$. Contradiction. \hfill \Box

We now prove Theorem 5.1. First, take S to be the stationary class of measurable cardinals which are limits of Woodin cardinals; for any $\mu \in S$, μ satisfies clause (1) of Theorem 5.1 by Corollary 5.7. To get clauses (2) and (3), we apply Lemma 5.2 to the function f on S that maps each $\mu \in S$ to the maximum of the ordinals ν, η, ξ, where ν appears in Proposition 5.8, η^ν appears in the proof of Proposition 5.3, and ξ appears in the statement of Corollary 5.7. Using Lemma 5.2, we obtain a properclass $S_0 \subseteq S$, a ν such that ν witnesses clauses (2) and (3) of Theorem 5.1 for each $\mu \in S_0$. This finishes the proof of Theorem 5.1.

Remark 5.9

1. By Lemma 5.2, the existence of S, S_0, ν above can be proved within ZFC.

2. It may appear that we use second order set theory to “pick” for each measurable limit of Woodin cardinals μ a set A_μ that codes V_μ, but the theory ZFC + “there is (global) well-order of V” is conservative over ZFC. Over any $V \models ZFC$, we can find a (class) generic extension $V[\mu]$ of V such that $V[\nu] \models \text{"ZFC+ there is a global well order"}$.\hfill \Box

3. The above two remarks simply say that we may assume as part of the hypothesis that V has a global well-order. This then allows us to get S, S_0, ν and the sequences $(Y_\mu : \mu \in S_0), (A_\mu : \mu \in S)$ in Theorem 5.1.
The rest of the argument does not need the hypothesis that $\Gamma_{\infty} \Vdash_\omega \text{AD}_R$. It only needs the conclusion of Theorem 5.1. To stress this point we make the following definitions.

Definition 5.10 We let T stands for the following theory.

1. T_0

2. There is a stationary class S, a proper class $S_0 \subseteq S$, an infinite regular cardinal ν and two sequences $\vec{Y} = (Y_\mu : \mu \in S_0)$ and $\vec{A} = (A_\mu : \mu \in S)$ such that the following conditions hold for any $\mu \in S$

 (a) μ is a measurable limit of Woodin cardinals,
 (b) μ stabilizes uB,
 (c) $|H_\mu| < \mu^+$,
 (d) $A_\mu \subseteq \mu$ codes V_μ and $\max(cf(\text{Ord} \cap H_\mu), cf(\text{Ord} \cap L^\text{cuB,}\wedge_\mu(A_\mu))) < \mu$;

 furthermore, if $\mu \in S_0$, then the following hold:

 (a) $\max(cf(\text{Ord} \cap H_\mu), cf(\text{Ord} \cap L^\text{cuB,}\wedge_\mu(A_\mu))) < \nu$,
 (b) $Y_\mu \in \wp_\nu(H_\mu^+)$,
 (c) $A_\mu \subseteq Y_\mu$, and
 (d) whenever $X \prec H_\mu^+$ is of size $< \mu$, is ν-closed and $Y_\mu \subseteq X$, X captures $L^\text{cuB,}\wedge_\mu(A_\mu)$.

5.1 A proof of Theorem 1.6

Assume the hypothesis of Theorem 1.6. Let S be the stationary class of cardinals μ which is a limit of Woodin cardinals and is strong reflecting strongs. For $\mu \in S$, let $g \subseteq \text{Coll}(\omega, < \mu)$ be V-generic. In $V[g]$, let A witness $L(A, R) \Vdash \text{LSA}$ and Γ^∞_g is the Suslin co-Suslin sets of $L(A, R)$. Let $(P_\mu, \Sigma_\mu) \in L(A, R)$ be an sts hod pair that generates Γ^∞_g, i.e. $\Gamma^b(P_\mu, \Sigma_\mu) = \Gamma^\infty_g$. By a pressing down argument similar to what has been done in this section, we can find ordinals $\nu_0 < \nu_1$, V-generic $g_0 \subseteq \text{Coll}(\omega, \nu_0)$, a proper class $W \subset S$ and a $P \in V_{\nu_1}[g_0]$ such that whenever $\mu < \nu$ are in W, whenever $h \subseteq \text{Coll}(\omega, < \nu)$ be $V[g_0]$-generic such that $h \upharpoonright \text{Coll}(\omega, < \mu) = g$ is $V[g_0]$-generic.

\footnote{The existence of (P_μ, Σ_μ) follows from the proof of [49, Theorem 0.5]. Also, we assume all short-tree strategies have strong-hull condensation and full normalization as given by the proof of [49, Theorem 0.5].}
(i) $\mathcal{P}_\mu = \mathcal{P}_\nu = \mathcal{P}$,

(ii) $\Gamma^\alpha_g = \text{Hom}^*_g(= \Gamma^b(\mathcal{P}_\mu, \Sigma_\mu))$,

(iii) $\Sigma_\nu \upharpoonright V[g] = \Sigma_\mu$.

To guarantee properties (i) and (ii), we run the same argument as done at the beginning of this section. Let $W^* \subset S$ be the proper class that satisfies (i) and (ii). We will show that there is a proper class $W \subset W^*$, for any $\mu < \nu$ in W, property (iii) holds for μ, ν. To guarantee property (iii), we need to use the (class version of the) pigeon-hole principle and the fact that μ, ν are strong reflecting strongs cardinals. We start with the following claim.

Claim 5.11 Let $\mu_0 < \mu_1$ be in W^*. Let $h \subseteq \text{Coll}(\omega, < \mu_1)$ be $V[g_0]$-generic such that $h \upharpoonright \text{Coll}(\omega, < \mu_0) = g$ is $V[g_0]$-generic. Let $\Sigma_1 \in V[h]$ be a short-tree strategy for \mathcal{P} such that $\Gamma^\alpha_h = \text{Hom}^*_h(= \Gamma^b(\mathcal{P}, \Sigma_1))$. Then $\Sigma_1 \upharpoonright V[g] \in V[g]$.

Proof. We use the strong reflecting strongs to show that Σ_1 is an extension of a short-tree strategy Λ of \mathcal{P} in $V[g]$. This gives the claim.

First, note that $\Sigma_1 = p[T]$ for some $T \in V[h \upharpoonright \text{Coll}(\omega, < \kappa)]$ for some cardinal $\kappa < \mu_1$ (this is because (the code set of) Σ_1 is Suslin in an LSA model of the form $L(A, \mathbb{R})$ in $V[h]$). Let $j : V \to M$ be elementary with critical point μ_0 such that $j(\mu_0) > \nu_1$, $H(\mu_1)^+ \subset M$, and μ_1 is strong in M. Let $k = h \upharpoonright \text{Coll} (\omega, \kappa)$. Note that $T \in M[k]$. Also, we let $H \subseteq \text{Coll}(\omega, < j(\mu_1))$ be $V[g_0]$-generic such that $H \cap \text{Coll}(\omega, < \mu_1) = h$.

For any $\nu > \mu_1$, we can lift Σ_1 to act on (countable) trees in $M[k][l]$ for $l \subseteq \text{Coll}(\omega, \nu)$ be $M[k]$-generic, using the fact that μ_1 is strong in $M[k]$ and $T \in M[k]$. To see this, fix ν, and let $k : M \to N$ be such that $\text{crt}(k) = \mu_1$, and $V^N_\mu \subset N$. Then k lifts to a map $k^+: M[k] \to N[k]$, and $k^+(T) \in N[k]$ witnesses that $p[k^+(T)]$ is a short-tree strategy Ψ, for \mathcal{P} acting on (countable) iterations in $N[k][l]$ for any $M[k]$-generic $l \subseteq \text{Coll}(\omega, k(\mu_1))$. Since $k^+(T) \in N[k] \cap M[k], \Psi \upharpoonright M[k][l \cap \text{Coll}(\omega, \nu)] \in M[k][l \cap \text{Coll}(\omega, \nu)]$. It is easy to see also that these extensions cohere one another. So we can let Λ be the short-tree strategy of \mathcal{P} in $M[H]$ obtained by joining all such lifts of Σ_1 to $M[H \uparrow \nu]$ for $\nu < j(\mu_1)$.

Let \dot{T} be a $\text{Coll}(\omega, < \mu_1)$-name for T and we may assume that the empty condition forces all relevant facts about T in V. Now, in $M[H]$, let Ψ be given by $j(\dot{T})_H = \text{def} T_1$. By elementarity, Ψ is a short-tree strategy of \mathcal{P} and in $M[H], \Gamma^b(\mathcal{P}, \Psi) = \text{Hom}^*_H = \Gamma^\alpha$. Now claim that $\Lambda = \Psi$. From this, elementarity, and the fact that $\mu_1 < j(\mu_0)$, we get that Σ_1 is an extension of some short-tree strategy of \mathcal{P} in $V[g]$.
Suppose not. Then there is a countable iteration $T \in M[H]$ of limit length according to both Ψ and Λ, but $\Psi(T) \neq \Lambda(T)$. Let $\nu < j(\mu_1)$ be such that $T, T_1 \in M[H \upharpoonright \nu]$ and let $k : M \to N$ be such that $\text{crt}(k) = \mu_1$, $V^M_{\nu+} \subset N$, and $T_1 \in N[H \upharpoonright \nu]$. We let k^+ denote the lift of k to $M[k]$. We note by absoluteness that in $N[H \upharpoonright \nu]$, there are embeddings from T into T_1 and into $k^+(T)$. In $N[k]$, let $\pi : \tilde{N} \to N[k]$ be elementary, where \tilde{N} is countable transitive, $V_\kappa \subset N$, $T \cup \{T\} \subset N$, $\{P, g\} \in N$, range of π contains all relevant objects. Let $\tilde{H} \subseteq \text{Coll}(\omega, < \pi^{-1}(\nu))$ be \tilde{N}-generic and $\tilde{H} \in N[k]$. Then in $\tilde{N}[\tilde{g}]$, let $\tilde{\Psi}, \tilde{\Lambda}$ be the versions of Ψ, Λ defined in $\tilde{N}[\tilde{H}]$. There is then a countable iteration \tilde{T} according to both $\tilde{\Psi}, \tilde{\Lambda}$ such that $b_0 =_{\text{def}} \tilde{\Psi}(\tilde{T}) \neq b_1 =_{\text{def}} \tilde{\Lambda}(\tilde{T})$. But note that in $N[k]$, $\Sigma_1(\tilde{T})$ is defined and is equal to both b_0 and b_1. This is because $N[k]$ has embeddings from T into the trees projecting $\tilde{\Psi}, \tilde{\Lambda}$ (respectively) and condensation properties of these strategies. This is a contradiction.

\[\square\]

By an easy application of the pigeon-hole principle, we get:

Claim 5.12 For each $\nu \in W^*$, for any proper class $W_0 \subseteq W^*(\nu + 1)$, for all $V[g_0]$-generic $g \subseteq \text{Coll}(\omega, < \nu)$, there is a proper class $W_1 \subseteq W_0$ such that for any $\mu \in W_1$, for any $V[g]$-generic $h \subseteq \text{Coll}(\omega, < \mu)$, letting Σ_μ be such that $\Gamma^b(\mathcal{P}, \Sigma_\mu) = \text{Hom}_h^*$, and letting Σ_ν be such that $\Gamma^b(\mathcal{P}, \Sigma_\nu) = \text{Hom}_g^*$, then $\Sigma_\mu \restriction V[g] = \Sigma_\nu$.

Proof. Otherwise, there is a $\nu \in W^*$, there is a proper class $W_0 \subseteq W \setminus (\nu + 1)$, there is a $V[g_0]$-generic $g \subseteq \text{Coll}(\omega, < \nu)$, there is a proper class $W_1 \subseteq W_0$ such that for any $\mu \in W_1$, there is a $V[g]$-generic $h \subseteq \text{Coll}(\omega, < \mu)$, such that letting Σ_μ be defined in $V[h]$ as above and Σ_ν be defined in $V[g]$ as above, $\Sigma_\mu \restriction V[g] \neq \Sigma_\nu$. We note that $\Sigma_\nu \restriction V[g] \in V[g]$ by Claim 5.11. This contradicts the pigeon-hole principle and the fact that there are set-sized many short-tree strategies (acting on countable iterations) on \mathcal{P} in $V[g]$.

By repeatedly applying the previous claim, we obtain a proper class $W \subseteq W^*$ such that for any $\nu < \mu$ in W, property (iii) holds for ν, μ. Let $\Sigma = \bigcup_{\nu \in W} \Sigma_\nu$. By the calculations just given, Σ is well-defined.

Claim 5.13 Let $\mu = \text{min}(W)$. Let $h \subseteq \text{Coll}(\omega, < \mu)$ such that $h \restriction \nu_0 = g_0$. For any $V[h]$-generic k, in $V[h \ast k]$, $\Gamma^b(\mathcal{P}, \Sigma) = \Gamma^\infty$.

Proof. Suppose not. Let h be such that in $V[g \ast h]$, $\Gamma^b(\mathcal{P}, \Sigma) \neq \Gamma^\infty$. It follows that in $V[g \ast h]$, there is $A \in \Gamma^\infty$ such that

$$A \notin \Gamma^b(\mathcal{P}, \Sigma).$$

(5)
Fix such a set A. Let $\nu \in W$ be large such that h is the generic for a poset of rank $< \nu$. Let $k \subseteq Coll(\omega, < \nu)$ be $V[g \ast h]$-generic. Then in $V[g \ast h \ast k]$, $\Gamma^b(\mathcal{P}, \Sigma) \neq \Gamma^\infty$. So letting A^k be the canonical interpretation of A in $V[g \ast h \ast k]$, we have there that

$$A^k \in \Gamma^b(\mathcal{P}, \Sigma) \tag{6}$$

(5) and (6) easily give a contradiction. □

Using the claim and the argument in Section 3.1 we get: for any $h \subseteq Coll(\omega, < \mu)$ such that $g = h \upharpoonright \nu_0$, where $\mu = \min(S)$,

$$V[g] \models \text{Sealing}.$$

This proves Theorem 1.6.

6 Condensing sets

Here we review some facts about condensing sets that were introduced in [32] and developed further in [39]. We develop this notion assuming the theory T introduced in Definition 5.10. Let $(S, S_0, \nu_0, \vec{Y}, \vec{A})$ witness that T is true.

Fix $\mu \in S_0$ and let $g \subseteq Coll(\omega, < \mu)$ be generic. We let \mathcal{H}, Ψ etc. stand for the CMI objects associated with μ. We summarize some basic notions and results concerning condensing sets which will play a key role in our K^c-constructions. [39, Chapter 9] gives more details and proofs of basic facts about these objects.

The notion of fullness that we will use is full in $L(\Gamma^\infty_g, \mathbb{R}_g)$. Notice that if $\Phi \in L(\Gamma^\infty_g, \mathbb{R}_g)$ is an ω_1-strategy with hull condensation then in $L(\Gamma^\infty_g, \mathbb{R}_g)$, for any $x \in \mathbb{R}_g$, $OD(\Phi)$ is the stack of ω_1-iterable Φ-mice over x. Because any such Φ-mouse has an iteration strategy in Γ^∞_g, it follows that “full in $L(\Gamma^\infty_g, \mathbb{R}_g)$” is equivalent to “full with respect to $Lp^{cuB}_\Phi(M)$ in $V[g]$”. Thus, given $M \in HCV[g]$ we say M is Φ-full if for any M-cutpoint η, $Lp^{cuB}_\Phi(M|\eta) \in M$. If M is a Φ-mouse over $M|\eta$ then by “M is Φ-full” we in fact mean that $Lp^{cuB}_\Phi(M|\eta)$ is computed in $V[g]$.

We start working in $V[g]$. Following [39, Chapter 9], for each $Z \subseteq \mathcal{H}$, we let:

- Q_Z be the transitive collapse of $Hull_1^\mathcal{H}(Z)$,
- $\tau_Z : Q_Z \rightarrow \mathcal{H}$ be the uncollapse map, and
- $\delta_Z = \delta^{Q_Z}$, where $\tau_2(\delta_Z) = \Theta = \delta^\mathcal{H}$.

For $X \subseteq Y \in \mathcal{P}_{\omega_1}(\mathcal{H})$, let
\[\tau_{X,Y} = \tau_{Y}^{-1} \circ \tau_{X} \]

Definition 6.1 Let \(Z \in \wp_{\omega_1}(\mathcal{H}) \). \(Y \in \wp_{\omega_1}(\mathcal{H}^{-}) \) is a **simple extension** of \(Z \) if
\[
\text{Hull}_{1}^{\mathcal{H}}(Z \cup Y) \cap \mathcal{H}^{-} \subseteq Y.
\]

Let \(Z, Y \) be as in Definition 6.1. Let
\[
Y \oplus Z = \text{Hull}_{1}^{\mathcal{H}}(Z \cup Y) \tag{7}
\]

Let
\[
\tau_{Y}^{Z} = \tau_{Z \oplus Y}, \tag{8}
\]

and
\[
\pi_{Y}^{Z} : \mathcal{Q}_{Z} \to \mathcal{Q}_{Z \oplus Y} \text{ be } \tau_{Y \oplus Z};
\]

we also write \(\mathcal{Q}_{Y}^{Z} \) for \(\mathcal{Q}_{Z \oplus Y} \) and \(\delta_{Y}^{Z} \) for \(\delta_{Z \oplus Y} \). We have that
\[
\tau_{Z} = \tau_{Y}^{Z} \circ \pi_{Y}^{Z} \tag{9}
\]

Given two simple extensions of \(Z, Y_{0} \subseteq Y_{1} \), we let \(\pi_{Y_{0}, Y_{1}}^{Z} : \mathcal{Q}_{Y_{0}}^{Z} \to \mathcal{Q}_{Y_{1}}^{Z} \) be the natural map. We also let
\[
\Psi_{Y}^{Z} = \tau_{Y}^{Z}-\text{pullback of } \Psi.
\]

Definition 6.2 \(Y \) is an **extension** of \(Z \) if \(Y \) is a simple extension of \(Z \) and \(\pi_{Y}^{Z} \upharpoonright (\mathcal{Q}_{Z} \upharpoonright \delta_{Z}) \) is the iteration embedding according to \(\Psi_{Y}^{Z} \). Here we allow \(Z \) to be an extension of itself.

Suppose \(Y \) is an extension of \(Z \). Let \(\sigma_{Y}^{Z} : \mathcal{Q}_{Y}^{Z} \to \mathcal{H} \) be given by
\[
\sigma_{Y}^{Z}(q) = \tau_{Z}(f)(\pi_{\mathcal{Q}_{Y}^{Z} \pi\rightarrow \mathcal{C}_{Y}^{Z}, \infty}(a)) \tag{10}
\]

where \(a \in (\mathcal{Q}_{Y}^{Z} \upharpoonright \delta_{Y}^{Z})^{<\omega} \) and \(q = \pi_{Y}^{Z}(f)(a) \).

Definition 6.3 \(Y \) is an **honest extension** of \(Z \) if

1. \(Y \) is an extension of \(Z \),
2. \(\sigma_{Y}^{Z} \) is defined and is total and,
3. \(\tau_{Z} = \sigma_{Y}^{Z} \circ \pi_{Y}^{Z} \).
We say Y is an iteration extension of Z if Y is an honest extension of Z and $Y = \sigma_Y^Z[Q_Y^Z|\delta_Y^Z]$.

Definition 6.4 We say Z is a simply condensing set if

1. for any extension Y of Z, Q_Y^Z is Ψ_Y^Z-full,
2. all extensions Y of Z are honest.

We say Z is condensing if for every extension Y of Z, $Z \oplus Y$ is a simply condensing set.

In $V[g]$, let

$$Cnd(\mathcal{H}) = \{ Z \in \wp_1(\mathcal{H}) : Z \text{ is condensing} \}.$$

Results in [39, Chapter 9] give

Theorem 6.5 In $V[g]$, $Cnd(\mathcal{H})$ is a club in $\wp_1(\mathcal{H})$ (i.e. it is unbounded and is closed under countable sequences).

Furthermore, for any cardinal $\kappa \geq \nu_0$ and $\kappa < \mu$, $\{ X \in V : X \in Cnd(\mathcal{H}) \land |X|^V \leq \kappa \}$ is a club in $\wp^V_\kappa(\mathcal{H})$. The same holds if V is replaced by $V[g \cap \text{Coll}(\omega, < \kappa)]$.

Furthermore, for each $Z \in Cnd(\mathcal{H})$, if Y is an honest extension of Z, then Y is an iteration extension of Z.

Also the following uniqueness lemma is very important for this paper. It follows from Proposition 2.8 and can be proved exactly the same way as [39, Lemma 9.1.9].

Proposition 6.6 Suppose Z is a condensing set. Suppose Y and W are extensions of Z such that $Q_Y^Z = Q_Y^W$. Then $\Psi_Y^Z = \Psi_W^Z$.

The following is an easy corollary of Proposition 6.6.

Corollary 6.7 Suppose Z is a condensing set. Suppose further that Y and W are two extensions of Z such that there is an embedding $i : Q_Y^Z \rightarrow_{\Sigma_1} Q_{W^Z}$. Then the i-pullback of Ψ_{W^Z} is Ψ_{Y^Z}.

Proof. Let $Y^* = \tau_{W^*} \circ i[Q_Y^Z]$. Then $Q_Y^Z = Q_{Y^Z}$. Moreover, $\Psi_Y^Z = \Psi_{Y^Z}$ and Ψ_{Y^*} is the i-pullback of Ψ_{W^Z}. \qed

69
Definition 6.8 Let Z be a condensing set. Q nicely extends Q_Z if Q is non-meek\footnote{See [39, Terminology 2.4.8]. Q is meek if either it has successor type or λQ is a limit ordinal. Otherwise, we say Q is non-meek.} and $Q^b = Q_Z$. We also say that Q is a nice extension of Q_Z.

Suppose Z is a condensing set and Y is an extension of Z. Suppose further that Q nicely extends Q^Z_Y. Given a stack \vec{T} on Q, we say S is a closure point of \vec{T} if

1. $\pi_{\vec{T} \leq S}$ is defined,\footnote{$\pi_{\vec{T} \leq S}$ is the iteration map along the main branch of the stack $\vec{T} \leq S$, and $\vec{T} \leq S$ is the stack restricted to nodes up to S. Similarly, $\vec{T} \geq S$ is defined in an obvious fashion.}

2. the generators of $\vec{T} \leq S$ are contained in δ^{S^b},

3. $\vec{T} \geq S$ is a stack on S.

The closure points of a stack are those nodes of the stack that are obtained either by iterating below the local Θ or by taking an ultrapower with critical point the local Θ (by “local Θ”, we mean δ_R of the current structure R; $\Theta = \delta^H$). We let $Cl(\vec{T})$ to be the set of closure points of \vec{T}. We let $<_\vec{T}$ be the linear ordering of $Cl(\vec{T})$.

Definition 6.9 Suppose $Z \in Cnd(H)$ and Y is an extension of Z. Suppose further that Q nicely extends Q^Z_Y. Given $E \in \vec{E}^Q$ such that $\text{crit}(E) = \delta^{Q^Z_Y}$, we say E is Z-realizable if there is W, an extension of $Z \oplus Y$ such that $E = E^Z_{Y,W}$, where $E^Z_{Y,W}$ is the extender defined by

$$ (a, A) \in E^Z_{Y,W} \iff \tau^Z_W(a) = \pi_{Q^Z_W, \infty}(a) \in \tau^Z_Y(A), \quad (11) $$

for any $a \in [\text{lh}(E)]^\omega$ and $A \in \wp(\text{crt}(E))^{[a]} \cap Q$.

We are continuing with the notation of Definition 6.9. Suppose \vec{T} is an iteration of Q. We say \vec{T} is a Z-realizable iteration if there is a sequence $(W_S : S \in Cl(\vec{T}))$ such that

1. $W_Q = Y$,

2. if $S <_{\vec{T}} R$ then W_R is an extension of $Z \oplus W_S$,

3. if $S <_{\vec{T}} R$ then $\pi^\vec{T}_{S^b, R^b} = \pi^Z_{W_S, W_R}$, and

4. if $S \in Cl(\vec{T})$ and \vec{U} is the largest fragment of $\vec{T} \geq S$ that is based on S^b then \vec{U} is according to $\Psi^Z_{W_S}$.
Suppose Q nicely extends Q^Z_Y and T is a Z-realizable iteration of Q. We cannot in general prove that T picks unique branches mainly because we say nothing about Q-structures that appear in T when we iterate above δ^S for some $S \in Cl(T)$. The next definition introduces a notion of a premouse that resolves this issue.

Definition 6.10 We say R is **weakly Z-suitable** if R is a hod premouse of lsa type such that $R = (R|\delta^R)^\#$, R has no Woodin cardinals in the interval (δ^R, δ^R_b) and for some extension Y of Z, R nicely extends $R^b = Q^Z_Y$.

The following lemma says that hulls of Z-realizable iterations are Z-realizable, and easily follows from Corollary 6.7.

Proposition 6.11 Suppose R and S are weakly Z-suitable hod premice. Suppose further that \vec{T} is a Z-realizable iteration of S and \vec{U} is an iteration of R such that (R, \vec{U}) is a hull of (S, \vec{T}) (in the sense of [33, Definition 1.30]). Then \vec{U} is also Z-realizable.

We now define the notion of Z-approved sts premouse of depth n by induction on n. The induction ranges over all weakly Z-suitable hod premice.

1. Suppose R is weakly Z-suitable hod premouse. We say that M is a **Z-approved sts premouse** over R of depth 0 if M is an sts premouse over R\(^{59}\) such that if $T \in M$ is according to S^M then T is Z-realizable.
2. Suppose R is weakly Z-suitable hod premouse. We say that M is a **Z-approved sts premouse** over R of depth $n + 1$ if M is a Z-approved sts premouse over R of depth n such that if $T \in M$ is ambiguous and $S^M(T)$ is defined then letting $b = S^M(T)$, $Q(b, T)$ is a Z-approved sts premouse over $(M(T))^\#$ of depth n.

Definition 6.12 We say M is a **Z-approved sts premouse** over R if for each $n < \omega$, M is a Z-approved sts premouse over R of depth n. We say M as above is a **Z-approved sts mouse** (over R) if M has a μ-strategy Σ such that whenever N is a Σ-iterate of M, N is a Z-approved sts premouse over R.

The following proposition is an immediate consequence of our definitions, but perhaps is a bit tedious to prove.

Proposition 6.13 Suppose R and S are weakly Z-suitable, N is an sts premouse over R and M is a Z-approved premouse (mouse) over S. Suppose $\pi : N \rightarrow_{\Sigma_1} M$. Then N is also a Z-approved premouse (mouse).

\(^{59}\)This in particular means that the strategy indexed on the sequence of M is a strategy for R.

71
Proof. We only show that if $T^* \in N$ is according to S^N then T^* is Z-realizable. Even less, we show that if $T^* = T^\prec U$ is such that πT exists then there is an extension W of Z such that $\pi T = \mathcal{Q}_W^Z$ and U is according to Ψ_W^Z. The rest of the proof is very similar.

Notice that by elementarity of π, $\pi(T^*)$ is according to S^M. Therefore, there is some extension U of Z such that $\pi(T^*) = \mathcal{Q}_U^Z$. Then $\pi T = \mathcal{Q}_W^Z$ and U is according to π-pullback of Ψ_W^Z. As the π-pullback of Ψ_W^Z is just Ψ_W^Z, we are done. □

We let $L_{p \mathcal{Z}a,sts}(\mathcal{R})$ be the union of all Z-approved sound sts mice over \mathcal{R} that project to $\leq \text{Ord} \cap \mathcal{R}$.

Finally, we can define the correctly guided Z-realizable iterations.

Definition 6.14 Suppose \mathcal{R} is a weakly Z-suitable hod premouse and \vec{T} is a Z-realizable iteration of \mathcal{R}. We say \vec{T} is correctly guided if whenever $S \in Cl(\vec{T})$, \vec{U} is the portion of $\vec{T} \geq S$ that is above δS^b, U is a normal component of \vec{U} and $\alpha < \text{lh}(U)$ is a limit ordinal such that $(\mathcal{M}(U \upharpoonright \alpha))^\#$ \models “$\delta(U)$ is a Woodin cardinal”, then letting $b = [0, \alpha] \cup U$, $\mathcal{Q}(b, U)$ is a Z-approved sts mouse over $(\mathcal{M}(U \upharpoonright \alpha))^\#$.

Combining Proposition 6.11 and Proposition 6.13 we get the following.

Corollary 6.15 Suppose \mathcal{R} and \mathcal{S} are weakly Z-suitable hod premice. Suppose further that \vec{T} is a correctly guided Z-realizable iteration of \mathcal{S} and \vec{U} is an iteration of \mathcal{R} such that (\mathcal{R}, \vec{U}) is a hull of (\mathcal{S}, \vec{T}) (in the sense of [33, Definition 1.30]). Then \vec{U} is also correctly guided Z-realizable iteration.

Our uniqueness theorem applies to \mathcal{R} that are not infinitely descending.

Definition 6.16 We say that a weakly Z-suitable hod premouse \mathcal{R} is infinitely descending if there is a sequence $(p_i, \mathcal{R}_i : i < \omega)$ such that

1. $\mathcal{R}_0 = \mathcal{R}$,
2. for every $i < \omega$, \mathcal{R}_i is weakly Z-suitable,
3. for every $i < \omega$, p_i is a correctly guided Z-realizable iteration of \mathcal{R}_i,
4. for every $i < \omega$, p_i has a last normal component T_i of successor length such that $\alpha_i = \text{def} \text{lh}(T_i) - 1$ is a limit ordinal and $\mathcal{R}_i = (\mathcal{M}(T_i \upharpoonright \alpha_i))^\#$.
5. for every $i < \omega$, setting $b_i = \text{def} (0, \alpha_i)_{T_i}$, b_i is a cofinal branch of T_i such that $Q(b_i, T_i)$ exists and is Z-approved.

Note that in the above definition, for each i, R_i is a strict initial segment of $Q(b_i, T_i)$. The following is our uniqueness result.

Proposition 6.17 Suppose \mathcal{R} is a weakly Z-suitable hod premouse that is not infinitely descending and \vec{T} is a correctly guided Z-realizable iteration of limit length on \mathcal{R}. There is then a unique branch b of \vec{T} such that $\vec{T} \upharpoonright \{b\}$ is correctly guided and Z-realizable.

The proof easily follows from [39, Lemma 4.6.3]. First notice that if \vec{T} doesn’t have a last component then there is nothing to prove. Also if there is $S \in \text{Cl}(\vec{T})$ such that $\vec{T}_{=S}$ is based on S^b then again there is nothing to prove as letting W_S be as in Definition 6.9, $\Psi^Z_{W_S}$ only depends on S^b (e.g. see [39, Lemma 9.1.9]). Let then T be the last normal component of \vec{T}. If b, c are two different branches such that $\vec{T} \upharpoonright \{b\}$ and $\vec{T} \upharpoonright \{c\}$ are correctly guided Z-realizable iterations then $Q(b, T) \neq Q(c, T)$ and both are Z-approved sts mice over $\mathcal{M}(T)^\#$. It now follows from [39, Lemma 4.6.3] and the fact that \mathcal{R} is not infinitely descending that we can reduce the disagreement of $Q(b, T)$ and $Q(c, T)$ to a disagreement between Ψ^Z_X and Ψ^Z_U for some extensions X, U of Z with $Q^Z_X = Q^Z_U$. However, this cannot happen by Proposition 6.6 (the proof is given by [39, Lemma 9.1.9]).

7 Z-validated iterations

We continue by assuming T. Let $(S, S_0, \nu_0, \vec{\lambda}, \vec{A})$ again witness that T is true and let μ, g, \mathcal{H} etc. be defined as in the previous section. The goal of this section is to introduce some concepts to be used in the K^c construction of the next section. The main new concept here is the concept of Z-validated iterations which are the kind of iterations that will appear in the K^c construction of the next section.

The following definition is important for this paper. It introduces the hulls that we will use to Z-validate mice, iterations, etc. It goes back to Steel’s [47].

Definition 7.1 Suppose $\lambda \in S_0 - \mu$ and $U \prec H_{\lambda^+}$. We say U is (μ, λ, Z)-**good** if $\mu \in U$, $(Y_\mu \cup Y_\lambda \cup Z) \subseteq U$, $|U| < \mu$ and $U^{<\mu} \subseteq U$. When μ and λ are clear from the context or are not important, we simply say U is a good hull. We say a good hull U is transitive below μ if $U \cap \mu \in \mu$.

73
If U is a good hull then we let $\pi_U : M_U = M \to H_{\lambda^+}$ be the inverse of the transitive collapse of U. If in addition U is transitive below μ, we let $\pi_U^+ : M_U[g_\nu] \to H_\Omega[g]$ where $\nu = \text{crit}(\pi_U)$ and $g_\nu = g \cap \text{Coll}(\omega, \nu)$.

Definition 7.2 We say \mathcal{R} is **weakly Z-suitable above** μ if \mathcal{R} is a hod premouse of lsa type such that $\mathcal{R} = (\mathcal{R}|\delta^\mathcal{R})^#$ and $\mathcal{R}^b = \mathcal{H}$.

Suppose \mathcal{R} is weakly Z-suitable above μ. Let Y_μ be as in clause 2.d of Definition 5.10.

Definition 7.3 Suppose \mathcal{R} is a weakly Z-suitable hod premouse above μ, \mathcal{M} is an sts premouse over \mathcal{R}, p is an iteration of \mathcal{R} and $\lambda \in S$ is the least such that $(\mathcal{R}, \mathcal{M}, p) \in H_\lambda$.

1. We say \mathcal{R} is not infinitely descending if whenever U is a (μ, λ, Z)-good hull such that $\mathcal{R} \in U$, $\pi_U^{-1}(\mathcal{R})$ is not infinitely descending.

2. We say p is **Z-validated** if whenever U is a (μ, λ, Z)-good hull such that $\{\mathcal{R}, p\} \subseteq U$, $\pi_U^{-1}(p)$ is a correctly guided Z-realizable iteration of $\pi_U^{-1}(\mathcal{R})$.

3. We say \mathcal{M} is a **Z-validated sts premouse** over \mathcal{R} if for every (μ, λ, Z)-good hull U such that $\{\mathcal{R}, \mathcal{M}\} \subseteq U$, letting $N = \pi_U^{-1}(\mathcal{M})$, N is a Z-approved sts premouse over $\pi_U^{-1}(\mathcal{R})$.

4. We say \mathcal{M} is a **Z-validated sts mouse** over \mathcal{R} if whenever U is a (μ, λ, Z)-good hull such that $\{\mathcal{R}, \mathcal{M}\} \subseteq U$, letting $N = \pi_U^{-1}(\mathcal{M})$, N is a Z-approved sts mouse over $\pi_U^{-1}(\mathcal{R})$.

5. Suppose \mathcal{M} is a Z-validated sts mouse over \mathcal{R} and ξ is an ordinal. We say \mathcal{M} has a **Z-validated ξ-strategy** Σ if whenever N is an iterate of \mathcal{M} via Σ, N is a Z-validated sts mouse over \mathcal{R}.

The following proposition is very useful and is an immediate consequence of Proposition 6.13. When X is a good hull we will use it as a subscript to denote the π_X-preimages of objects that are in X.

Proposition 7.4 Suppose \mathcal{M} is an sts premouse over weakly Z-suitable \mathcal{R} above μ and $\lambda \in S$ is least such that $(\mathcal{M}, \mathcal{R}) \in H_\lambda$. Suppose U is a (Z, μ, λ)-good hull such that $\{\mathcal{R}, \mathcal{M}\} \subseteq U$ and \mathcal{M}_U is not Z-approved. Then whenever U^* is a (Z, μ, λ)-good hull such that $U \cup \{U\} \subseteq U^*$, \mathcal{M}_{U^*} is not Z-approved. Hence, \mathcal{M} is not Z-validated.
Similarly for iterations.

Proposition 7.5 Suppose R and λ are as in Proposition 7.4. Suppose p is an iteration of R. Suppose U is a (μ, λ, Z)-good hull such that $\{R, p\} \subseteq U$ and p_U is not Z-realizable. Then whenever U^* is a (μ, λ, Z)-good hull such that $U \cup \{U\} \subseteq U^*$, p_{U^*} is not Z-realizable. Hence, p is not Z-validated.

Definition 7.6 We say R is Z-suitable above μ if it is weakly Z-suitable and whenever M is a Z-validated sts mouse over R then $M \models \"\delta_R \text{ is a Woodin cardinal}\"$.

We let $L_{p^Z_{sts}}(R)$ be the union of all Z-validated sound sts mice over R that project to $Ord \cap R$. The following proposition is a consequence of Proposition 6.17.

Proposition 7.7 Suppose R is a weakly Z-suitable and not infinitely descending. Suppose \vec{T} is a Z-validated iteration of R of limit length. Then there is at most one branch b of \vec{T} such that $\vec{T} \upharpoonright \{b\}$ is Z-validated.

8 Z-validated sts constructions

We assume that the theory T holds (see Definition 5.10). We then fix $(S, S_0, \nu_0, \vec{Y}, \vec{A})$ that witness T and let $\mu \in S_0$. We will omit μ when discussing CMI objects at μ.

The construction that we will perform in the next section will hand us a hod premouse R that is weakly Z-suitable above μ. The rest of the construction that we will perform will be a fully backgrounded construction over R whose aim is to either find a Z-validated sts mouse destroying the Woodiness of δ_R or proving that no such structure exist. In the latter case, we will show that we must produce an excellent hybrid premouse.

The construction that we describe in this section is a construction that is searching for the Z-validated sts mouse over R destroying the Woodiness of δ_R. In this construction, we add two kinds of objects. The first type of objects are extenders, and they are handled exactly the same way that they are handled in all fully backgrounded constructions. The second kind of objects are iterations. Here the difference with the ordinary is that there is no strategy that we follow as we index branches of iterations that appear in the construction. Instead, when our sts scheme demands that a branch of some iteration p must be indexed, we find an appropriate branch and index it. We will make sure that the iterations that we need to consider in the construction are all Z-validated. It must then be proved that given a Z-validated iteration there is always a branch that is Z-validated.
The solution here has a somewhat magical component to it. As we said above, the fully backgrounded Z-validated sts construction is not a construction relative to a strategy. This is an important point that will be useful to keep in mind. Instead, the construction follows the sts scheme, and the Z-validation method is used to find branches of iterations that come up in the construction. To see that we do not run into trouble we need to show that any such iteration T that needs to be indexed according to our sts scheme has a branch b such that $T \sim \{b\}$ is Z-validated. Let \mathcal{M} be the stage of the construction where T is produced. Recall now that we have two types of such iterations. If T is unambiguous then Z-validation will produce a branch in a more or less straightforward fashion (see Proposition 8.13). If T is ambiguous then the fact that we need to index a branch of it suggests that we have also reached an authenticated Q-structure for T. We will then show that there must be a branch with this Q-structure. This is the magical component we speak of above. In general, given an iteration T of a weakly Z-suitable R that is produced by HFBC(μ) of the next section, there is no reason to believe that there is a Q-structure for it of any kind. Even if there is a Q-structure Q of some kind, there is no reason to believe that sufficiently closed hulls of T will have branches determined by the pre-image of Q. In our case, what helps is that $Q \in \mathcal{M}$, and this condition, in the authors’ opinion, is somewhat magical.

One particularly unpleasant problem is that we cannot in general prove that the non weakly Z-suitable levels of the fully backgrounded construction produced in the next sections are iterable. This unpleasantness causes us to work with weakly Z-suitable R that are iterates of a level of fully backgrounded construction of the next section. In order to have an abstract exposition of the Z-validated sts construction, we introduce the concept of honest weakly Z-suitable R over which we will perform our Z-validated sts constructions. The honest weakly Z-suitable hod premice will have honesty witnesses, and that is the concept we introduce first. The honesty witnesses are essentially models of a K^c-construction.

In this section and subsequent sections, we work with the fine structure in [55].

8.1 Realizability array

We continue with $(S, S_0, \nu_0, \vec{Y}, \vec{A}), \mu \in S_0$ etc. We define the notion of an array at μ by induction. We say $\vec{V} = V_0$ is an array of length 0 if $V_0 = \mathcal{H}$. Suppose we have already defined the meaning of array of length $< \eta$. We want to define the meaning

\footnote{The proof of this fact is in Section 10; it shows that if a level S of the construction has no Woodin cardinals, then if T is a tree on S, then sufficiently closed hulls of T will have branches determined by the pre-image of $Q(T)$.}
Definition 8.1 We say $\vec{V} = (V_\alpha : \alpha \leq \eta)$ is an array of length η at μ if the following conditions hold.

1. For every $\alpha < \eta$, $(V_\beta : \beta \leq \alpha)$ is an array of length α at μ.

2. V_η nicely extends \mathcal{H} and is a Z-validated hod premouse.

3. For all $\alpha < \eta$, if V_α is weakly Z-suitable then there is $\beta \leq \eta$ such that V_β is a Z-validated sts mouse over V_α and $\text{rud}(V_\beta) \models \text{“there are no Woodin cardinals }> \delta^\mathcal{H}$.

4. For all $\alpha < \eta$, if $\text{rud}(V_\alpha) \models \text{“there are no Woodin cardinals } \text{ }> \delta^\mathcal{H}$ then V_α has a Z-validated iteration strategy.

We say \vec{V} is small if $\text{rud}(V_\eta) \models \text{“there are no Woodin cardinals } \text{ }> \delta^{V_\eta}$”. We let $\eta = \text{lh}(\vec{V})$ and for $\alpha \leq \eta$, we let $\vec{V} \upharpoonright \alpha = (V_\beta : \beta \leq \alpha)$.

Recall the notions of k-maximal iteration trees in [55, Definition 3.4], weak k-embeddings [55, Definition 4.1]. For an iteration tree T on \mathcal{M}, letting M^T_α be the α-th model in the tree; for $\alpha + 1 < \text{lh}(T)$, recall the notion of degree $\deg^T(\alpha + 1)$ [55, Definition 3.7]. Recall the definition of D^T: if $\alpha + 1 \in D$, then the extender $E_{\alpha + 1}^T$ is applied to a strict initial segment of M^T_β where $\beta = T - \text{pred}(\alpha + 1)$. For λ limit, $\deg^T(\lambda)$ is the eventual values of $\deg^T(\alpha + 1)$ for $\alpha + 1 \in [0, \lambda]_T$. For a cofinal branch b of T, $\deg^T(b)$ is defined to be the eventual value of $\deg^T(\alpha + 1)$ for $\alpha + 1 \in b$. We write $C_k(M)$ for the k-th core of M. Sometimes, we confuse $C_0(M)$ with M itself.

Definition 8.2 Suppose \vec{V} is an array at μ. We say \vec{V} has the Z-realizability property if for all $\alpha < \text{lh}(V)$, $\vec{V} \upharpoonright \alpha$ has the Z-realizability property and whenever $g \subseteq \text{Coll}(\omega, < \mu)$ is generic, in $V[g]$, whenever $\pi : \mathcal{W} \rightarrow C_k(V_\eta)$ is a weak k-embedding and T are such that

1. $Z \subseteq \text{rng}(\pi)$

2. $\mathcal{W}, T \in HC$,

3. T is Z-approved normal, k-maximal iteration of \mathcal{W} that is above $\delta^{\mathcal{W}b}$

the following holds (in $V[g]$).
1. \(T \) is of limit length and there is a cofinal well-founded branch \(c \) such that \(c \) has no drops in model (i.e. \(D^T \cap b = \emptyset \)); letting \(l = \deg^T(b) \), there is a weak \(l \)-embedding \(\tau : M^T_c \rightarrow C_1(\wp_n) \) such that \(\pi \upharpoonright W = \tau \circ \pi^T_c \).

2. \(T \) is of limit length and there is a cofinal well-founded branch \(c \) such that \(c \) has a drop in model, and there is \(\beta < \eta \) and a weak \(l \)-embedding \(\tau : M^T_{\gamma} \rightarrow C_1(\wp_{\beta}) \) such that \(\tau \upharpoonright (M^T_{\gamma})^b = \pi \upharpoonright (M^T_c)^b \), where \(l = \deg^T(\gamma) \).

3. \(T \) has a last model and there is a weak \(l \)-embedding \(\tau : M^T_{\gamma} \rightarrow C_1(\wp_{\beta}) \) such that \(\pi \upharpoonright W = \tau \circ \pi^T_{\gamma} \), where \(l = \deg^T(\gamma) \).

4. \(T \) has a last model and letting \(\gamma = \text{lh}(T) - 1 \), \([0, \gamma]_T \cap D^T = \emptyset \) and there is a weak \(l \)-embedding \(\tau : M^T_{\gamma} \rightarrow C_1(\wp_{\beta}) \) such that \(\pi \upharpoonright (M^T_{\gamma})^b = \pi \upharpoonright (M^T_c)^b \), where \(l = \deg^T(\gamma) \).

When the above 4 clauses hold we say that \(T \) is \((\pi, \overline{V})\)-realizable.

In the following, we will follow the convention in [57, Section 1.3], a (hod, hybrid, or pure extender) premouse has the form \((M, k)\), where \(M \) is a \(k \)-sound, acceptable \(J \)-structure. \(k(M) = k \) is the degree of soundness of \(M \). We write the core \(C(M) \) for the \((k(M) + 1)\)-core of \(M \) (if this makes sense, i.e. when \(M \) is \(k(M) + 1 \)-solid). Similarly, we write \(\rho(M) \) for the \((k(M) + 1)\)-projectum and \(p(M) \) for the \((k(M) + 1)\)-standard parameters of \(M \). When \(C(M) \) exists, \(k(C(M)) = k(M) + 1 \). \(M \) is sound iff \(M = C(M) \). We allow our iterations (e.g. \(Z \)-validated iterations) to consist of stacks of normal trees, where we may drop gratuitously at the start of a tree.

Proposition 8.3 Suppose \(\overline{V} \) is an array with \(Z \)-realizability property. Assume further that \(p \) is a \(Z \)-validated iteration of \(C_n(\wp_n) \) (for some \(n \)) with last model \(R \) such that \(\pi^p \) exists and all the generators of \(p \) are contained in \(\delta^{R^b} \). Suppose \(U \) is a good hull such that \((\overline{V}, R, p) \in U \). Let \(R_U = \pi_U^{-1}(R), p_U = \pi^{-1}(p), W = \pi^{-1}(C(\wp_n)) \). There is then a weak \(n \)-embedding \(k : R_U \rightarrow C_n(\wp_n) \) such that \(\pi_U \upharpoonright W = k \circ \pi^T_U \).

Proof. As \(p \) is \(Z \)-realizable, letting \(X = U \cap H^- \), we can find a \(Y \) extending \(Z \oplus X \) such that \(Q^Z_Y = R^0_Y \), and \(\tau^Z_X = \tau^Z_Y \circ \pi^{p_U,b} \). Let \(E \) be the \((\delta^{R^b}, \delta^H)\)-extender derived from \(\tau^Z_Y \) and \(i : \text{Ult}(R_U, E) \rightarrow C_n(\wp_n) \) be the factor map given by \(i(\pi^p(f)(a)) = \pi_U(f)(\tau^Z_Y(a)) \). It then follows that \(i \circ \pi_E \) is as desired. \(\square \)

Next we introduce a weak notion of realizability. Suppose \(\overline{V} \) is an array of length \(\eta \) that has the \(Z \)-realizability property and \(p \) is a \(Z \)-validated iteration of \(C_n(\wp_n) \).
with last model \mathcal{R} such that π^p exists and the generators of p are contained in $\delta^{\mathcal{R}^b}$. Suppose \mathcal{T} is an ambiguous iteration of \mathcal{R} that is above $\delta^{\mathcal{R}^b}$. We say b is (Z, \tilde{V})-embeddable branch of \mathcal{T} if whenever $\lambda \in S$ is such that $(\mathcal{R}, \mathcal{T}, \tilde{V}) \in V_\lambda$ and U is a (μ, λ, Z)-good hull with $(\tilde{V}, \mathcal{R}, \mathcal{T}, b) \in U$, there is $\alpha \leq lh(\tilde{V})$, some l, and a weak l-embedding $k : \mathcal{M}_{kU}^{T_U} \rightarrow \mathcal{C}_l(V_\alpha)$.

Proposition 8.4 Suppose \tilde{V} is a small array with the Z-realizability property. Set $\eta = lh(\tilde{V})$. Suppose further that p is a Z-validated iteration of $\mathcal{C}_n(V_\eta)$ with last model \mathcal{R} such that π^p exists and the generators of p are contained in $\delta^{\mathcal{R}^b}$. Additionally, suppose that \mathcal{T} is an iteration of \mathcal{R} above $\delta^{\mathcal{R}^b}$ such that $p^\mathcal{T}$ is Z-validated iteration of V_η. Then for all limit $\alpha < lh(\mathcal{T})$, if $\mathcal{T} \upharpoonright \alpha$ is ambiguous then $[0, \alpha]_\mathcal{T}$ is the unique branch c of $\mathcal{T} \upharpoonright \alpha$ such that $Q(c, \mathcal{T} \upharpoonright \alpha)$ exists and is (Z, \tilde{V})-embeddable.

Proof. We first show that that $c =_{def} [0, \alpha]_\mathcal{T}$ is (Z, \tilde{V})-embeddable. Towards contradiction assume not, and suppose α is least such that $\mathcal{T} \upharpoonright \alpha$ is ambiguous but $[0, \alpha]_\mathcal{T}$ is not (Z, \tilde{V})-embeddable. Let U be a (μ, λ, Z)-good hull such that $(\mathcal{R}, \tilde{V}, p, \mathcal{T}, \alpha) \in U$. Let $V' = \pi^{-1}_U(\mathcal{C}_n(V_\eta))$ and $k : \mathcal{R}_U \rightarrow \mathcal{C}_n(V_\eta)$ be such that $\pi_U \upharpoonright V' = k \circ \pi^p$.

We now have a cofinal branch d of $\mathcal{T}_U \upharpoonright \alpha_U$ such that for some $\beta \leq \eta$ there is $m : \mathcal{M}_{dU}^{T_U} \rightarrow V_\beta$ and $Q(d, \mathcal{T}_U \upharpoonright \alpha_U)$-exists. Let $\mathcal{M} = Q(d, \mathcal{T}_U \upharpoonright \alpha_U)$ and $\mathcal{N} = Q(c_U, \mathcal{T} \upharpoonright \alpha_U)$. Both \mathcal{M} and \mathcal{N} are Z-approved. Let $S_0 = \mathcal{M}(\mathcal{T}_U \upharpoonright \alpha_U)^\#$. If we could conclude that $\mathcal{M} = \mathcal{N}$ then we would get that $c_U = d$, and that would finish the proof. To conclude that $\mathcal{M} = \mathcal{N}$, we need to argue that S_0 is not infinitely descending.

Claim. Suppose S_0 is infinitely descending. Then there is a sequence $(p_i, S_i : i < \omega)$ witnessing that S_0 is infinitely descending such that for some $\beta < \eta$ and for some $i_0 < \omega$ for every $i < j \in (i_0, \omega)$ there are weak n_i-embeddings $m_i : S_i \rightarrow \mathcal{C}_{n_i}(V_\beta)$ such that $m_i = m_j \circ \pi^{p_i}$.

Proof. Set $m_0 = m$, $S_0 = S$ and $\beta_0 = \beta$. We build the sequence by induction. As the successive steps of the induction are the same as the first step, we only do the first step. Let $(p'_i, S'_i : i < \omega)$ be any sequence witnessing that S_0 is infinitely descending. We now have two cases. Suppose first that there is $\beta_1 \leq \beta_0$ and weak k-embedding $m_1 : S'_1 \rightarrow \mathcal{C}_k(V_{\beta_1})$ such that if $\beta_1 = \beta_0$ then $m_0 = m_1 \circ \pi^{p_0}$. In this case, set $p_0 = p'_0$ and $S_1 = S'_1$. Notice that S_1 is infinitely descending. Suppose next that there is no such pair (β_1, m_1). In this case we have d_1, β_1, m_1, n_1 such that

1. $\beta_1 \leq \beta_0$,
2. \(d_1 \) is a maximal branch of \(p'_1 \upharpoonright \epsilon \) for some \(\epsilon < lh(p'_1) \),

3. \(m_1 : M^{p'_1 \upharpoonright \epsilon}_{d_1} \to C_{n_1}(V_{\beta_1}) \),

4. if \(\beta_1 = \beta_0 \) then \(m_0 = m_1 \circ \pi_{p'_1 \upharpoonright \epsilon}^{d_1} \).

In this case, set \(p_1 = p'_1 \upharpoonright \epsilon \{d_1\} \) and \(S_1 = M^{p'_1 \upharpoonright \epsilon}_{d_1} \), with \(\beta_1 \) and \(m_1 \) as above. We now claim that \(S_1 \) is still infinitely descending. To see this, let \(c = [0, \epsilon]_{p'_1} \). Notice that we must have that \(Q(c, p' \upharpoonright \epsilon) \neq Q(d_1, p'_1 \upharpoonright \epsilon) \). As both are Z-approved, we must have that \(S_1 \) is infinitely descending. Continuing in this manner, we get the sequence we desire. \(\square \)

The existence of a sequence as in the claim above gives us a contradiction, as the sequence much have a well-founded branch. The uniqueness proof is similar to the proof of the claim above, and we leave it to our reader. \(\square \)

Remark 8.5 If the iteration \(p \) in Propositions 8.3 and 8.4 drops, we can still embed \(R_U \) by some map \(k : R_U \to C_l(V_{\alpha}) \) for some \(\alpha < \epsilon \) and some \(l < \omega \). In this case, there is some model \(M \in p \) such that \(\pi_{M_U, R_U}^{p_U} \) exists and there is a weak \(l \)-embedding \(\sigma : M_U \to C_l(V_{\alpha}) \) such that \(\sigma = k \circ \pi_{M_U, R_U}^{p_U} \).

Motivated by Proposition 8.4, we make the following definition.

Definition 8.6 Suppose \(R \) is a weakly Z-suitable hod premouse. We say \(R \) is honest if there is an array \(\tilde{V} = (V_\alpha : \alpha \leq \eta) \) at \(\mu \) with the Z-realizability property such that letting \(\lambda \in S \) be least such that \(R, \tilde{V} \in V_\lambda \), the following conditions hold.

1. Either \(V_\eta = R \) or there is a Z-validated iteration \(p \) of \(V_\eta \) of limit length such that \(\pi^{n, b} \) exists and \(R = (M(p))^{\#} \).

2. \(\tilde{V} \) is small if and only if \(V_\eta \neq R \).

If \(R \) is honest and \(\tilde{V} \) is as above then we say that \(\tilde{V} \) is an honesty certificate for \(R \).

Suppose \(R \) is honest as witnessed by \((\tilde{V}, p) \). Then we say \(T \) is a Z-validated iteration of \(R \) if \(p^\sim T \) is a Z-validated iteration of \(V_\eta \) where \(\eta + 1 = lh(\tilde{V}) \).
Proposition 8.7 Suppose \mathcal{R} is honest weakly Z-suitable hod premouse, (\vec{V}, p) is an honesty witness, and suppose \mathcal{T} is a Z-validated ambiguous iteration of \mathcal{R} with last model \mathcal{S} such that $\pi^{\mathcal{T}}$ exists and the generators of \mathcal{T} are contained in $\delta_S^\mathfrak{b}$. Suppose U is a good hull such that $(\mathcal{R}, \vec{V}, p, \mathcal{T}, \mathcal{S}) \in U$. There is then $\alpha \leq \text{lh}(\vec{V})$, a Z-approved sts mouse \mathcal{M} over \mathcal{R}_U, an embeddings $k : \mathcal{M} \rightarrow \mathcal{C}(\mathcal{V}_\alpha)$ and an embedding $\sigma : \mathcal{S}_U \rightarrow \mathcal{C}(\mathcal{V}_\alpha)$ such that

1. $\mathcal{M} \models "\delta^\mathcal{R} \text{ is a Woodin cardinal}"$,
2. $k \upharpoonright \mathcal{R}_U = \sigma \circ \pi_U$,
3. $\mathcal{M} \neq \mathcal{R}_U$ if and only if $\mathcal{R} \neq \mathcal{C}(\mathcal{V}_\eta)$ (so \vec{V} is small), and
4. if $\mathcal{M} \neq \mathcal{R}_U$ then $\text{rud}(\mathcal{M}) \models "\delta^\mathcal{R} \text{ is not a Woodin cardinal}"$.

Proof. First we claim that there is $\alpha \leq \text{lh}(\vec{V})$, an $l < \omega$, and a weak l-embedding $k : \mathcal{R}_U \rightarrow \mathcal{C}(\mathcal{V}_\alpha)$ such that $Z \subseteq \text{rng}(k)$. If $\mathcal{R} = \mathcal{V}_\eta$ then set $\alpha = \eta$ and $k = \pi_U \upharpoonright \mathcal{R}_U$.

Suppose then $\mathcal{R} \neq \mathcal{V}_\eta$ (note that this includes the “or . . .” clause in (1)). In this case, \vec{V} is small. Let \mathcal{W} be the largest node on p such that $\pi_{p^Z}^\mathcal{W}$ exists and the generators of $p_{\leq \mathcal{W}}$ are contained in $\delta^\mathfrak{w}$. Then $p_{\geq \mathcal{W}}$ is above $\delta^\mathfrak{w}$. It follows from Proposition 8.4 and the remark after that $p_{\leq \mathcal{W}}$ is according to (Z, \vec{V})-embeddable branches, and therefore we must have $\alpha \leq \text{lh}(\vec{V})$ and a cofinal branch c of p_U such that there is an appropriate weak l-embedding $k : \mathcal{M}_c^{p_U} \rightarrow \mathcal{C}(\mathcal{V}_\alpha)^{61}$ such that $Z \subseteq \text{rng}(k)$. Set then $\mathcal{M} = \mathcal{M}_c^{p_U}$; note that $\mathcal{R}_U \triangleleft \mathcal{M}$ and $\text{rud}(\mathcal{M}) \models "\delta^\mathcal{R} \text{ is not Woodin}"$ by smallness of \vec{V}.

We continue with one such pair (α, k). Next, as \mathcal{T} is Z-validated, we must have Y an extension of Z such that $X =_{\text{def}} k[R]_b \subseteq Z \oplus Y$, $\mathcal{S}_Y^b = \mathcal{Q}_Y^b$ and $\tau_Y^X = \tau_Y^b \circ \pi_U$. We can then lift τ_Y^X to \mathcal{S} and obtain some weak l-embedding $\sigma : \mathcal{S}_Y \rightarrow \mathcal{C}(\mathcal{V}_\alpha)$ such that $k = \sigma \circ \pi_U$. σ is essentially the ultrapower map by the $(\delta^S_b, \delta^\mathcal{K})$-extender derived from τ_Y^X (see the proof of Proposition 8.3).

Finally we discuss iterations that are above \mathcal{S}^b where \mathcal{S} is as in Proposition 8.7. The proof is just like the proof of Proposition 8.4.

Proposition 8.8 Suppose \mathcal{R} is an honest weakly Z-suitable hod premouse and (\vec{V}, p) is an honesty witness for \mathcal{R}. Suppose \mathcal{T} is a normal Z-validated iteration of \mathcal{R}. Let \mathcal{S} be the least node of \mathcal{T} such that $\pi^{\mathcal{T} \leq \mathcal{S}}$ exists and the generators of $\mathcal{T}_{\leq \mathcal{S}}$ are contained in \mathcal{S}^b. Let U be a good hull such that $\{\mathcal{R}, \vec{V}, \mathcal{T}\} \in U$, and let $(\alpha, \mathcal{M}, k, \sigma)$ be as in

61l is specified as in Definition 8.2.
Proposition 8.7. Then $T \geq S$ is $(\sigma, \vec{V} \upharpoonright \alpha)$-realizable. Moreover, for each limit ordinal $\beta < \text{lh}(T \geq S)$, if $T \geq S \upharpoonright \beta$ is ambiguous then $d = \text{def} \ [0, \beta]_{T \geq S}$ is the unique cofinal branch of $T \geq S \upharpoonright \beta$ which is (Z, \vec{V})-embeddable.

8.2 The Z-validated sts construction

Suppose R is honest and \vec{V} is an honesty certificate for R. Let X be any transitive set such that $R \in X$. Let $\lambda \in S_0$ be such that $R, X \in H_\lambda$. In what follows we introduce the fully backgrounded (Z, λ)-validated sts construction over X.

Definition 8.9 We say $(M_\xi, N_\xi : \xi \leq \Omega^*)$ are the models of the fully backgrounded (Z, λ)-validated sts construction over X if the following conditions hold:

1. $\Omega^* \leq \lambda$, for all $\xi < \lambda$ if M_ξ, N_ξ are defined then M_ξ and $N_\xi \in H_\lambda$.
2. For every $\xi \leq \Omega^*$, M_ξ and N_ξ are Z-validated sts hod premice over X.
3. Suppose the sequence $(M_\xi, N_\xi : \xi < \eta)$ and M_η have been constructed. Suppose further that there is a total (κ, ν)-extender F such that letting $G = M_\eta \cap F$, (M_η, G) is a Z-validated sts hod premouse over X. Let then $N_\eta = (M_\eta, F)$ and $M_{\eta+1} = C(N_\eta)$, where $C(N_\eta)$ is the appropriate core of N_η (as specified in the previous section).
4. Suppose the sequence $(M_\xi, N_\xi : \xi < \eta)$ and M_η have been constructed, and $T \in M_\eta$ is the $<_{M_\eta}$-least unambiguous tree62 without an indexed branch. Suppose further that there is a branch b of T such that (M_η, b) is a Z-validated sts hod premouse63 over R. Let then $N_\eta = (M_\eta, b)$ and $M_{\eta+1} = C(N_\eta)$.
5. Suppose the sequence $(M_\xi, N_\xi : \xi < \eta)$ and M_η has been constructed, and for some ambiguous tree $T \in M_\eta$ there is a branch b such that (M_η, b) is a Z-validated sts hod premouse over R. Let T be the M_η-least such tree and b be such a branch for T. Then $N_\eta = (M_\eta, b)$ and $M_{\eta+1} = C(N_\eta)$.
6. Suppose the sequence $(M_\xi, N_\xi : \xi < \eta)$ and M_η has been constructed and all of the above cases fail. In this case we let $N_\eta = J_1(M_\eta)$ and provided N_η is a Z-validated sts hod premouse over R, $M_{\eta+1} = C(N_\eta)$.
7. Suppose the sequence $(M_\xi, N_\xi : \xi < \eta)$ has been constructed and η is a limit ordinal. Then $M_\eta = \liminf_{\xi \to \eta} M_\xi$.

62 $<_{M_\eta}$ is the canonical well-ordering of M_η.
63 This in particular implies that $b \in M_\eta$.

82
The fully backgrounded (f.b.) Z-validated sts construction can break down for several reasons. Below we list all of these reasons. We say that f.b. Z-validated sts construction breaks down at η if one of the following conditions holds.

Break1. \mathcal{M}_η is not solid or universal.
Break2. \mathcal{M}_η is not Z-validated.
Break3. There is an unambiguous tree $T \in \mathcal{M}_\eta$ such that the indexing scheme demands that a branch of T must be indexed yet T has no branch b such that (\mathcal{M}_η, b) is a Z-validated sts premouse over \mathcal{R}.
Break4. There is an ambiguous tree $T \in \mathcal{M}_\eta$ such that the indexing scheme demands that a branch of T must be indexed yet T has no branch b such that (\mathcal{M}_η, b) is a Z-validated sts premouse over \mathcal{R}.
Break5. $\rho(\mathcal{M}_\eta) \leq \delta^H$.

The argument that the construction doesn’t break down because of Break1 is standard, cf. [27]. It is essentially enough to show that the countable substructures of \mathcal{M}_η are iterable. We will show that much more complicated forms of iterability hold, and so to save ink and to not repeat ourselves, we will leave this portion to our kind reader. To see that the construction doesn’t break down because of Break2 is not too involved, and we will present that argument below. At this point, we cannot do much about Break5. We will deal with it when X becomes a more meaningful object. The remaining cases will be handled in the next subsections.

Proposition 8.10 Suppose \mathcal{R} is an honest weakly Z-suitable hod premouse as witnessed by \vec{V}, X is a transitive set such that $\mathcal{R} \in X$ and $\lambda \in S_0$ is such that $X, \vec{V} \in V_\lambda$. Then the f.b. (Z, λ)-validated construction over X does not break down because of Break2.

Proof. Towards contradiction assume that there is some model \mathcal{W}^* that appears in the f.b. Z-validated sts construction such that \mathcal{W}^* is not Z-validated. Let \mathcal{W} be the least such model.

Suppose first that \mathcal{W} is an \mathcal{M} model, i.e., $\mathcal{W} = \mathcal{M}_\alpha$ for some α. Suppose first α is a limit ordinal. Let U be a (μ, λ, Z)-good hull such that $\{\mathcal{R}, \mathcal{W}\} \subseteq U$ and $(\mathcal{M}_\beta : \beta < \alpha) \subseteq U$. We have that \mathcal{M}_β is Z-validated for every $\beta < \alpha$. Let $(\mathcal{K}_\xi : \xi \leq \alpha_U) = \pi_{\alpha_U}^{-1}(\mathcal{M}_\beta : \beta < \alpha)$. Fix $T \in \mathcal{K}_{\alpha_U}$ according to $S^{\mathcal{K}_{\alpha_U}}$. We need to see that T is Z-approved. Fix $\xi < \alpha_U$ such that $T \in \mathcal{K}_\xi$ and is according to $S^{\mathcal{K}_\xi}$. Then $\pi_U(T) \in \mathcal{M}_{\pi_U(\xi)}$ and is according to $S^{\mathcal{M}_{\pi_U(\xi)}}$. Therefore, T is Z-approved.

Suppose next that $\alpha = \beta + 1$. Because we are assuming the least model that is not Z-validated is \mathcal{M}_α we must have that \mathcal{N}_β is Z-validated. Let now U be a
(μ, λ, Z)-good hull such that $\{ \mathcal{R}, \mathcal{W} \} \subseteq U$. But then $\pi^{-1}_U(M_\alpha) = \mathcal{C}(\pi^{-1}_U(N_\beta))$. It then follows that $\pi^{-1}_U(M_\alpha)$ is Z-approved (see Proposition 6.13).

We now assume that \mathcal{W} is an \mathcal{N}-model. Let α be such that $\mathcal{W} = N_\alpha$. Suppose first that $N_\alpha = (M_\alpha, b)$ where b is a branch. Then it follows from the definition of Z-validated sts constructions that N_α is Z-validated. The case that $N_\alpha = (M_\alpha, E)$ is trivial as no new iterations of \mathcal{R} have been introduced.

Finally suppose $N_\alpha = \mathcal{T}_1(M_\alpha)$. If N_α is not Z-validated then it is because there is a tree $\mathcal{T} \in N_\alpha - \mathcal{T}_1(M_\alpha)$ such that \mathcal{T} is according to S^{N_α} yet \mathcal{T} is not Z-validated. Let $\xi = \sup\{ \zeta : \mathcal{T} \upharpoonright \zeta \in M_\alpha \}$. Then all proper initial segments of $\mathcal{T} \upharpoonright \xi$ is in M_α and hence, all of the proper initial segments of $\mathcal{T} \upharpoonright \xi$ are Z-validated. Because \mathcal{T} is not Z-validated, $\xi + 1 \leq lh(\mathcal{T})$.

The following is the key point. There is no limit ordinal $\beta \in (\xi, lh(\mathcal{T}))$. This is because to define $[0, \beta]_\mathcal{T}$ we need to “leave behind” a level that at the minimum is a model of ZFC, while there is no such level between M_α and N_α. Thus, it must be that $lh(\mathcal{T}) = \xi + n$ for some $n \in [1, \omega)$. Let then m be least such that $\mathcal{T} \upharpoonright \xi + m$ is Z-validated but $\mathcal{T} \upharpoonright \xi + m + 1$ is not. We then have three cases.

The first case is the following.

1. $\pi^{\mathcal{T}[\xi,b]}$ is defined,
2. $\mathcal{T}_{\geq \xi}$ is above $(M^T_{\xi})^b$, and
3. letting $\mathcal{Q} = M^T_{\xi+m}$, $\text{crit}(E^T_{\xi+m}) = \delta^{Q^b}$.

Let now U be a (μ, λ, Z)-good hull such that $\{ \mathcal{R}, \mathcal{W} \} \subseteq U$. Let $E = \pi^{-1}(E^T_{\xi+m})$ and let Y be the least node of \mathcal{T}_U to which E must be applied. Using Proposition 8.8 fix β, an $l < \omega$, and a weak l-embedding $k : Y \to \mathcal{C}_l(V_\beta)$ such that $Z \subseteq \text{rng}(k)$. Using the fact that $(\mathcal{T}_U)_{\geq Y}$ is $(k, \mathcal{V} \upharpoonright \beta)$-realizable, we can find $\gamma \leq \beta$ and a weak n-embedding $\tau : Q_U \to \mathcal{C}_n(V_\gamma)$ such that $Z \subseteq \text{rng}(\tau)$. Therefore, as $\tau(E)$ is Z-validated, letting $X = k[Y^b] \cap H^-$, there is Y an extension of $Z \uplus X$ such that $Ult(Y^b, E) = Q^{\mathcal{C}}_\gamma$. Hence, \mathcal{T} is Z-validated.

The next possibility is when $\mathcal{T}_{\geq \xi}$ is either a tree of finite length based on $\pi^{\mathcal{T}[\xi,b]}(R^b)$ or it only uses extenders with critical points $> \pi^{\mathcal{T}[\xi,b]}(\delta^b)$. The second case is trivial, and the first case follows from an argument similar to the one given above.

Finally we could have that $\xi + 1 = lh(\mathcal{T})$, where ξ is a limit ordinal, and for cofinal set of $\beta < \xi$, letting $\gamma_\beta = \text{pred}_T(\beta + 1)$, $\text{crit}(E_\beta) = \delta^{\pi_{\mathcal{T}[\xi,b]}(\delta^b)}$. This case, however, easily follows from the direct limit construction.

□

84
8.3 Break3 never happens

In this subsection, \mathcal{R} is a honest weakly Z-suitable, X is a transitive set containing \mathcal{R} and $\lambda \in S_0$ is such that $(\mathcal{R}, X) \in V_\lambda$. Our main goal here is to prove that the (Z, λ)-validated sts construction over X doesn’t break down because of Break3. First, we prove the following general lemma.

Lemma 8.11 Suppose \mathcal{M} is a hod premouse for which \mathcal{M}^b is defined, and p is an iteration of \mathcal{M} such that $\pi^{p,b}(\mathcal{M})$ exists. Let δ be a Woodin cardinal of $\pi^{p,b}(\mathcal{M})$ and let ξ be least such that $\pi^{p,b}(\xi) \geq \delta$. Then $\text{cf}(\delta) = \text{cf}(\langle \xi^+ \rangle^\mathcal{M})$.

Proof. Let Q be the least model of p such that $Q^b = \pi^{p,b}(\mathcal{M})$ and set $q = p_{\leq Q}$. Let N be the least model on q such that $\delta \in \text{rng}(\pi^{q}_{\mathcal{N}, Q})$. Without losing generality we can assume $Q = N$ as $\text{rng}(\pi^{q}_{\mathcal{N}, Q}) \cap \delta$ is cofinal in δ. As the iteration embeddings are cofinal at Woodin cardinals if $\pi^{q}(\xi) = \delta$ then again there is nothing to prove. Assume then $\pi^{q}(\xi) > \delta$. Without loss of generality we can assume that $\xi = \delta^\mathcal{M}$. If $\xi < \delta^\mathcal{M}$ then we need to redefine \mathcal{M} as $\mathcal{M}|\zeta$ where ζ is the \mathcal{M}-successor of $\sigma^\mathcal{M}(\xi)$.

Because N is the least model that has δ in it, it must be case that $N = \text{Ult}(W, E)$ where W is a node in q and E is an extender used in q to obtain N. Moreover, $\text{crit}(E) = \delta^\mathcal{M}$. Below π_E is used for $\pi^\mathcal{M}_E$.

Suppose $\pi_E(f)(a) = \delta$ and $\pi_E(g)(a) = \nu_E$, where

1. ν_E is the supremum of the generators of E
2. $f, g : \delta^\mathcal{W} \to \delta^\mathcal{W}$ are functions in \mathcal{W},
3. $a \in [\nu_E + 1]^{<\omega}$.

Note that $\nu_E < \delta$.

We first show that

$(1) \sup(\{\pi_E(k)(a) : k : \delta^\mathcal{W} \to \delta^\mathcal{W}, k \in \mathcal{W}\} \cap \delta) = \delta.$

To see (1) fix $h : \delta^\mathcal{W} \to \delta^\mathcal{W}$ in \mathcal{W} and let $s [\nu_E + 1]^{<\omega}$ be such that $\pi_E(h)(s) < \delta$. We want to find k such $\pi_E(k)(a)$ is in $[\pi_E(h)(s), \delta]$. Set $k(u) = \text{the supremum of points of the form } h(t) \text{ such that } h(t) < f(u) \text{ and } t \text{ is a finite sequence from } g(u)$. $f(u)$ is a Woodin cardinal (in \mathcal{R}), so $k(u) < f(u)$ for E_a-almost all u, so

$\pi_E(k)(a) < \delta = \pi_E(f)(a)$.

Also

85
\[\pi_E(h)(s) \leq \pi_E(k)(a) \]

by the definition of \(k \).

Let \(\lambda = \text{Ord} \cap \mathcal{W}^b \). We have that \(\text{cf}(\lambda) = \text{cf}(\text{Ord} \cap \mathcal{M}^b) \). Thus, it is enough to show that \(\text{cf}(\delta) = \text{cf}(\lambda) \). Let \(\eta = \text{cf}(\delta) \) and let \((k_\alpha : \alpha < \eta) \subseteq \mathcal{W} \) be such that

1. for \(\alpha < \eta \), \(k_\alpha : \delta^\mathcal{W}^b \to \delta^\mathcal{W}^b \);
2. for \(\alpha < \eta \), \(k_\alpha \in \mathcal{W} \);
3. for \(\alpha < \beta < \eta \), \(\pi_E(k_\alpha)(a) < \pi_E(k_\beta)(a) < \delta \).

Let \(\vec{\gamma} = (\gamma_\alpha : \alpha < \eta) \) be increasing and such that

1. \(k_\alpha \in \mathcal{W} | \gamma_\alpha \);
2. \(\rho(\mathcal{W} | \gamma_\alpha) = \delta^\mathcal{W}^b \).

We claim that \(\vec{\gamma} \) is cofinal in \(\lambda \). Suppose it is not. In that case, we can fix \(\zeta > \sup \vec{\gamma} \) such that \(\rho_1(\mathcal{W} | \zeta) = \delta^\mathcal{W}^b \). Let \(p \) be the first standard parameter of \(\mathcal{W} | \zeta \). For each \(\alpha < \eta \), let \(a_\alpha \in [\delta^\mathcal{W}^b]^{< \omega} \) be such that \(k_\alpha \) is definable from \(p \) and \(a_\alpha \) in \(\mathcal{W} | \zeta \). It then follows that

\[\sup(Hull_{1}^{\pi_E(\mathcal{W} | \zeta)}(\pi_E(p), \delta^\mathcal{W}^b) \cap \delta) = \delta, \]

as witnessed by \((a_\alpha : \alpha < \eta) \). As \(Hull_{1}^{\pi_E(\mathcal{W} | \zeta)}(\pi_E(p), \delta^\mathcal{W}^b) \in \text{Ult}(\mathcal{W}, E) = \mathcal{N} \), the above equality implies that \(\delta \) is singular in \(\mathcal{N} \), contradiction. Thus, \(\vec{\gamma} \) must be cofinal in \(\lambda \). Therefore, \(\text{cf}(\lambda) = \eta \). \(\square \)

Recall that we are working under theory \(T \), see Definition 5.10.

Corollary 8.12 Suppose \(T \) is a normal tree on \(\mathcal{R} \) such that \(\pi^{T,b} \) exists and \(\delta \) is a Woodin cardinal of \(\pi^{T,b}(\mathcal{H}) \). Then \(\text{cof}(\delta) < \mu \) and if \(\delta > \sup(\pi^{T,b}[\delta^\mathcal{H}]) \) then \(\text{cf}(\delta) < \nu_0 \).

Proof. First note that if \(\delta \) is a Woodin cardinal of \(\mathcal{H} \), then \(\text{cof}(\delta) < \mu \). This is because there is a hod pair \((\mathcal{P}, \Sigma) \in \mathcal{F} \), a \(\delta^* \) such that \(\mathcal{P} \models \delta^* \) is Woodin and \(\delta = \pi_{\mathcal{P}, \infty}(\delta^*) \). Now, if \(\delta > \sup(\pi^{T,b}[\delta^\mathcal{H}]) \) then by Lemma 8.11, \(\text{cf}(\delta) = \text{cf}(\text{Ord} \cap \mathcal{H}) < \nu_0 \). \(\square \)

We now state and prove our main proposition of this subsection.

Proposition 8.13 The \((Z, \lambda)\)-validated sts construction over \(X \) doesn’t break down because of Break3.
Proof. [39, Section 12] handles a similar situation, and the proof here is very much like the proofs in [39, Section 12]. Because of this we give an outline of the proof.

Suppose \mathcal{M} is a model appearing in the (Z, λ)-validated sts construction over X and $T^* \in \mathcal{M}$ is an unambiguous iteration of \mathcal{R} such that the indexing scheme requires that we index a branch of T^* at $\text{Ord} \cap \mathcal{M}$. We need to show that there is a branch b of T^* such that (\mathcal{M}, b) is Z-validated. Because of Proposition 7.7 and Proposition 8.8, there can be at most one such branch.

Because T^* is unambiguous, we have a normal iteration $\mathcal{T} \in \mathcal{M}$ with last model \mathcal{S} such that $\pi^\mathcal{T}$ is defined and a normal iteration \mathcal{U} based on \mathcal{S} such that $\mathcal{T} \upharpoonright \mathcal{U} = T^*$. Because the construction doesn’t break because of Break2 (see Lemma 8.10), we have that \mathcal{M} is Z-validated and therefore, \mathcal{T} is Z-validated. Also, we can assume that \mathcal{U} is not based on $\mathcal{S}|\xi$ where $\xi = \sup(\pi^\mathcal{T}[\delta^\mathcal{H}])$, as otherwise the desired branch of \mathcal{U} is given by Ψ.

We now show that \mathcal{U} has a branch b such that (\mathcal{M}, b) is Z-validated. Let $\lambda \in S$ be least such that $\mathcal{R}, \mathcal{M} \in H_\lambda$. Given a (μ, λ, Z)-good hull \mathcal{U} such that $\{\mathcal{M}, \mathcal{T}, \mathcal{S}, \mathcal{U}\} \subseteq \mathcal{U}$, let $b_\mathcal{U} = \Psi^\mathcal{U}_Z(\pi^\mathcal{U}^{-1}(\mathcal{U}))$ where W is any extension of Z such that $\pi^\mathcal{U}^{-1}(\mathcal{S}^b) = Q^Z_W$. First we claim that for all \mathcal{U} as above,

Claim 1. $b_\mathcal{U} \in M_{\mathcal{U}}$.

Proof. Given a \mathcal{U} as above, we will use it as a subscript to denote the $\pi_{\mathcal{U}}$-preimages of the relevant objects. Fix then a \mathcal{U} as above. Suppose first that $Q(b_\mathcal{U}, \mathcal{U})$ doesn’t exist. As we are assuming \mathcal{U} is not based on $\mathcal{S}|\xi$, Corollary 8.12 implies that $\text{cf}(\delta(\mathcal{U})) \leq \nu_0$. Because $M_{\mathcal{U}}$ is ν_0-closed it follows that $b_\mathcal{U} \in M_{\mathcal{U}}$.

Suppose next that $Q(b_\mathcal{U}, \mathcal{U})$ exists. Let $A_\mathcal{U}$ be the preimage of A_λ. Notice now that letting Φ be the $\pi_{\mathcal{U}}$-pullback of Ψ_λ, we have that $Lp_{\mathcal{U}^b, \Phi}(A_\mathcal{U}) \in M_{\mathcal{U}}$.

Let $Y = U \cap \mathcal{H}$. Clearly Y is an extension of Z and because \mathcal{M} is Z-validated, we must have W^* an extension of $Z \cup Y$ such that $\mathcal{S}^b_U = Q^Z_{W^*}$. Notice that because $\Psi^\mathcal{U}_Z$ is computable from Φ and because $Lp_{\mathcal{U}^b, \Phi}(A_\mathcal{U}) \in M_{\mathcal{U}}$, we must have that $Q(b_\mathcal{U}, \mathcal{U}) \in M_{\mathcal{U}}$. Hence, $b_\mathcal{U} \in M_{\mathcal{U}}$. \qed

Suppose first that $\text{cf}(lh(\mathcal{U})) > \omega$. In this case, let \mathcal{U} be as above and set $c = \pi_{\mathcal{U}}(b_\mathcal{U})$. Then c is the unique well-founded branch of \mathcal{U} and hence, for any (μ, λ, Z)-good hull X such that $U \cup \{(\mathcal{M}, c), U\} \in X, c_X = b_X$. Hence, (\mathcal{M}, c) is Z-validated (see Proposition 7.4).

Suppose then $lh(\mathcal{U}) = \omega$. We now claim that there is a (μ, λ, Z)-good hull X such that for all (μ, λ, Z)-good hull Y such that $X \cup \{\mathcal{M}, X\} \in Y, \pi_{X,Y}(b_X) = b_Y$. Assuming not we get a continuous chain $(X_\alpha : \alpha < \mu)$ such that
1. \(M, U \in X_0 \),
2. for all \(\alpha < \mu \), \(X_{\alpha+1} \) is a \((\mu, \lambda, Z)\)-good hull,
3. for all \(\alpha < \mu \), \(X_\alpha \cup \{X_\alpha\} \in X_{\alpha+1} \),
4. for all \(\alpha < \mu \), \(\pi_{X_\alpha+1, X_{\alpha+2}}(b_{X_{\alpha+1}}) \neq b_{X_{\alpha+1}} \).

Let \(\nu \in (\nu_0, \mu) \) be an inaccessible cardinal such that \(X_\nu \cap \mu = \nu \). Fix now \(\alpha < \nu \) such that \(\sup(b_{X_\nu} \cap \text{rng}(\pi_{X_\alpha, X_\nu})) = \delta(U_{X_\nu}) \).

As \(\text{cf}(lh(U_{X_\nu})) = \omega \) this is easy to achieve. For \(\beta \in [\alpha, \nu] \) let \(c_\beta \) be the \(\pi_{X_\beta, X_\nu} \)-pullback of \(b_{X_\nu} \). Let for \(\beta \in [\alpha, \nu], W_\beta \) be such that \(S^b_{X_\beta} = Q^Z_{W_\beta} \). It follows that \(c_\beta \) is according to \(\pi_{X_\beta, X_\nu} \)-pullback of \(\Psi^Z_{W_\beta} \). Because \(\Psi^Z_{W_\beta} \) depends only \(S^b_{X_\beta} \), we have that \(c_\beta = b_{X_\beta} \) (this is because the \(\pi_{X_\beta, X_\nu} \)-pullback of \(\Psi^Z_{W_\beta} \) is a strategy of the form \(\Psi^Z_Y \) where \(Q^Z_Y = S^b_{X_\beta} \)). It follows that for all \(\beta < \gamma \in [\alpha, \nu] \), \(\pi_{X_\beta, X_\gamma}(b_{X_\beta}) = b_{X_\gamma} \).

Fix now an \(X \) as above. Set \(c = \pi_X(b_X) \). The above property of \(X \) guarantees that \((M, c)\) is \(Z \)-validated. Indeed, fix a \((\mu, \lambda, Z)\)-good hull \(U \) such that \(M, c \in U \).

Let \(Y \) be a \((\mu, \lambda, Z)\)-good hull such that \(X \cup U \cup \{X, U\} \in Y \). Then \(\pi_{U, Y}(c_U) = \pi_{X,Y}(b_X) = b_Y \). It follows that \(c_U \) is the \(\pi_{U, Y} \)-pullback of \(\Psi^Z_W \) where \(W \) is such that \(S^b_Y = Q^Z_W \). Hence, \(c_U = b_U \).

\[\square \]

8.4 Break4 never happens

The following is the main proposition of this subsection. We continue with \((R, XV, \lambda)\) of the previous section.

Proposition 8.14 The \((Z, \lambda)\)-validated sts construction over \(X \) doesn’t break because of Break4.

Proof. Towards a contradiction, suppose that the first time the \((Z, \lambda)\)-validated sts construction over \(X \) breaks is because of Break4. This means that for some \(\gamma \), setting \(\mathcal{W} = \mathcal{M}_\gamma \)

1. \(\mathcal{W} \) is \(Z \)-validated,
2. there is an ambiguous tree \(T \in \mathcal{W} \) that is according to \(S^W \) and is such that one of the following holds:
(a) there is a cofinal branch \(b \in W \) such that \(Q(b, T) \) exists and is authenticated in \(W \) but \((W, b) \) is not \(Z \)-validated, or

(b) there is a \(Q \)-structure \(Q \in W \) that is authenticated but there is no branch \(b \in W \) such that \(Q(b, T) = Q \).

Assume first that case 2.a holds. Let \(\beta \) be such that \(W|\beta \) authenticates \(b \). Thus \(W|\beta \) is a model of \(\text{ZFC} \) in which there is a limit of Woodin cardinals \(\nu \) and the derived model of \(W|\beta \) at \(\nu \) has a strategy for \(Q(b, T) \) that is \(W|\beta \)-authenticated.

Fix now a \((\mu, \lambda, Z)\)-good hull \(U \) such that \((R, W, T) \in U \) and \(_T^{b U} \{b_U\} \) is not a correctly guided \(Z \)-realizable iteration of \(R_U \). Because \(W \) is \(Z \)-validated, we can assume that \(T_U \) is correctly guided \(Z \)-realizable iteration. It must then be that \(Q(b_U, T_U) \) is not \(Z \)-approved.

To save ink, let us prove that in fact \(N = \text{def} \ Q(b_U, T_U) \) is \(Z \)-approved of depth 1. As the proof of depth \(n \) is the same, we will leave the rest to the reader. To start with, notice that since \(T_U \) itself is correctly guided \(Z \)-realizable, we have that \(S = (M(T_U)^#) \) is weakly \(Z \)-suitable. To prove that \(N \) is \(Z \)-approved of depth 1 we need to show that if \(U \in N \) is according to \(S^N \) then \(U \) is \(Z \)-realizable.

Fix then \(X \in C I(U) \). First let’s show that there is \(X \) an extension of \(Z \) such that \(Q^Z_X = X^b \). Because \(T_U^U \{b_U\} \) is authenticated inside \(W_U|\beta_U \), we must have an iteration \(Y \) of \(R_U \) according to \(S^{W_U} \) with last model \(R_1 \) such that there is an embedding \(k : X^b \to R_1^b \) with the property that \(\pi^{\gamma, b} = k \circ \pi^{U(x, b)} \). Because \(Y \) is \(Z \)-realizable, we must have \(Y \) an extension of \(Z \) such that \(R_1^b = Q_Y^Z \). Composing \(k \) with \(\pi^Y \) we have that \(X^b = Q^Z_X \) for some \(X \).

The rest is similar. If \(U^* \) is the longest initial segment of \(U_{\geq X} \) that is based on \(X^b \) then there are \(Y \) and \(k \) as above such that \(U^* \) is according to \(k \)-pullback of \(S^{R_{1U}} \). But because \(W_U \) is \(Z \)-approved, \(S^{W_U}_{R_1^b} \) is a fragment of \(\Psi^Z_Y \) where \(Y \) is as above. Hence, \(U^* \) is according to \(\Psi^Z_X \) for some \(X \) (see Corollary 6.7).

Next we assume that case 2.b holds. Let then \(U \) be a \((\mu, \lambda, Z)\)-good hull such that \((R, W, T, Q) \in U \). Because \(T \) is \(Z \)-validated, we have that the \(\pi_U \)-realizable branch of \(d \) of \(T_U \) is cofinal. Suppose then \(Q(d, T_U) \) exists. Then because it is \(Z \)-approved, we must have that \(Q(d, T_U) = Q_U \) (for example see Proposition 8.4). It follows that \(d \in W_U \), and so \(\pi_U(d) \) is our desired branch.

Claim. \(Q(d, T_U) \) exists.

Proof. Set \(N = M^{T_U}_d \) and \(j = \pi^{T_U}_d \). We have that \(j(Q_U) \in N \) and is authenticated in \(N \). Let \(\gamma = j(\beta_U) \). Then \(N|\gamma \) has Woodin cardinals. Let \(\delta \) be the least one that is \(> \delta(T_U) \). We can now iterate \(N \) below \(\delta \) to make \(Q_U \) generic for the
extender algebra at the image of δ. This iteration produced $i: \mathcal{N} \rightarrow \mathcal{N}_1$ such that $\text{crit}(i) > \delta(\mathcal{T}_U)$. Letting $h \subseteq \text{Coll}(\omega, i(\delta))$ be \mathcal{N}_1-generic such that $Q_U \in \mathcal{N}_1[h]$, we can find $l: Q_U \rightarrow i(j(Q_U))$. As $\mathcal{N}_1[h] \models "i(j(Q_U))"$ is authenticated and has an authenticated strategy", $\mathcal{N}_1[h] \models "i(j(Q_U))"$ has an authenticated iteration strategy", and hence Q_U is definable in $\mathcal{N}_1[h]$ from objects in \mathcal{N}_1. It follows that $Q_U \in \mathcal{N}_1$, implying that $\mathcal{N}_1[h] \models "\delta(\mathcal{T}_U)"$ is not a Woodin cardinal”. Hence, $\mathcal{N} \models "\delta(\mathcal{T}_U)"$ is not a Woodin cardinal”. Therefore, $Q(d, \mathcal{T}_U)$ exists. □

8.5 A conclusion

Proposition 8.15 Suppose \vec{V} is a small array with the Z-realizability property. Then either

1. \mathcal{V}_η has a Z-validated iteration strategy

or

2. there is a Z-validated ambiguous iteration p of \mathcal{V}_η such that $\mathcal{M}(p)^\#$ is Z-suitable.

Proof. The proof has already been given in the previous subsections. Suppose that \mathcal{V}_η does not have a Z-validated iteration strategy. The proof of Proposition 8.13 shows that if p is a Z-validated unambiguous iteration of \mathcal{V}_η of limit length then there is a unique branch b of p such that $p^\sim \{b\}$ is Z-validated. Therefore, since picking Z-validated branches is not defining an iteration strategy for \mathcal{V}_η, we must have an ambiguous Z-validated iteration p of \mathcal{V}_η which does not have a Z-validated branch.64

We now claim that $\mathcal{M}(p)^\#$ is a Z-suitable hod premouse. Indeed, suppose there is some Z-validated sts premouse Q extending $\mathcal{R} =_{\text{def}} \mathcal{M}(p)^\#$ such that Q is a Q-structure for p. Let then U be a good hull such that $\{\vec{V}, p, Q\} \in U$. Appealing to Proposition 8.7, we now have $\beta \leq lh(\vec{V})$, a branch b of p_U such that $Q(b, p_U)$ exists and a weak l-embedding $k: \mathcal{M}_{\beta}^{p_U} \rightarrow \mathcal{C}(\mathcal{V}_\beta)$ for an appropriate l. It follows that $Q(b, p_U)$ is Z-approved and hence, $Q(b, p_U) = Q_U$. Because $Q_U \in M_U$, we have that $b \in M_U$. Then $c =_{\text{def}} \pi_U(b)$ is a (cofinal) branch of p such that $p^\sim \{c\}$ is Z-validated. □

64Note that there may not be any Q-structure for p. 90
9 Hybrid fully backgrounded constructions

The goal of this section is to adopt the K^c-construction used in [39] to our current situation. As we have the large cardinals in V, it is easier to perform fully backgrounded constructions than using partial background certificates. For instance, proofs of iterability will be easier.

The construction that we intend to perform will produce an almost excellent (see Definition 2.6) hod premouse P extending \mathcal{H}. The construction will be done in V.

The fully backgrounded construction that we have in mind has two different backgrounding conditions for extenders. The extenders with critical point $> \Theta = \delta^H$ will have total extenders as their background certificates. The extenders with critical point Θ will be authenticated by good hulls. We call this construction the \textit{hybrid fully backgrounded construction} over \mathcal{H}, and denote it by $\text{HFBC}(\mu)$.

We fix a condensing set $Z \in \text{Cnd}(\mathcal{H}) \cap V$. While Z will appear in our authentication definitions, it can be shown that $\text{HFBC}(\mu)$ does not depend on Z. $\text{HFBC}(\mu)$ proceeds more or less according to the usual procedure for building hod pairs until we reach a weakly Z-suitable stage \mathcal{R}. At this stage, we must continue with a fully backgrounded Z-validated sts construction over \mathcal{R}. If this construction produces a Q-structure for \mathcal{R} then we attempt to construct a Z-validated strategy for it. Failing to do so will produce our honest Z-suitable \mathcal{R} as in Proposition 8.15.

HFBC can fail in the usual ways, by producing a level whose countable substruc-
tures are not iterable. However, our constructions are aimed at producing models with strictly weaker large cardinal structure than the those for which we know how to prove iterability. In particular, the main theorem of [30] implies that HFBC does not fail because of issues having to do with iterability.

We should say that the construction that follows is an adaptation of a similar construction introduced in [39, Section 10.2.9 and 12.2]. Because of this we will not dwell too much on how extenders with critical point δ^H are chosen. The reader may consult [39, Lemma 12.3.15]. The first of these constructions used fully backgrounded certificates like we will do in the next subsection. It was used to prove the Mouse Set Conjecture in the minimal model of LSA. The second was used to construct a model of LSA from PFA.

\footnote{The real reason for a failure of such constructions is failure of universality or solidity both of which are consequences of iterability.}
9.1 The levels of HFBC(µ)

We assume that T holds and let $(S, S_0, \nu_0, \tilde{Y}, \tilde{A})$ witness it. Let $\mu \in S_0$. When discussing the CMI objects at μ we will omit μ from our notation.

In the next section, we will define the sequence $(M_\xi, \Sigma_\xi : \xi \leq \Omega')$, where $\Omega' \leq \text{Ord}$, of levels of the hybrid fully backgrounded construction at μ. Here, we develop the terminology that we will use to describe the passage from M_ξ to $M_{\xi+1}$.

HFBC resembles the K^c-construction of [39, Section 12.2] except that we require that the extenders with critical point $> \delta^H$ used in the construction have total certificates in the sense of [27, Chapter 12]. Because our construction does not reach a Woodin cardinal that is a limit of Woodin cardinals, the results of [30] apply. For instance, [30, Theorem 1.1] will be used to conclude that the countable submodels of each M_ξ is $\omega_1 + 1$-iterable. Other theorems that we will use from [30] are [30, Theorem 2.1, 2.10, 3.11 and Corollary 3.14].

Say that M nicely extends \mathcal{H} if there is a (μ, μ, Z)-good hull U such that M_U nicely extends $Q^Z_{U \cap H}$. Suppose now that M is a Z-validated hod premouse nicely extending \mathcal{H}. Set $mo(M) = o^{\mathcal{M}(\delta^H)}$.

Definition 9.1 Given a Z-validated hod premouse nicely extending \mathcal{H} we say M is **appropriate** if $\text{Ord} \cap M = mo(M)$ and $M \vDash \text{“there are no Woodin cardinals in the interval } [\delta^H, mo(M)] \text{”}$.

Given an appropriate M, we would like to describe the next appropriate Z-validated hod premouse. We do this by preparing M, which involves building over M some mild structures in order to reach the next stage that is either a stage where we can add an extender or is a weakly Z-suitable stage. In the later case we will put HFBC(μ) on hold and continue with the Z-validated sts construction. The preparation of M has two stages. We first add a sharp to M and then close the resulting hod premouse under its strategy. Each of this construction can change M as they can reach levels that project across M. The functions that we referred above are $\text{next}_\#, \text{next}_s, \text{next}_{\text{bex}}$ and $\text{next}_{\Theta-ex}$.

$\text{next}_{\text{bex}}(M)$

This function simply adds a backgrounded extender to M. Suppose that M is appropriate. We say $\text{next}_{\text{bex}}(M)$ is **almost successful** if there is a triple (κ, λ, F) such that

1. $\kappa < \lambda$ are inaccessible cardinals $> \delta^H$,

66“mo” stands for the “Mitchell Order”.

92
2. \(F \) is a \((\kappa, \lambda)\)-extender such that \(V_\lambda \subseteq Ult(V, F) \),

3. letting \(G = F \cap \mathcal{M} \), \((\mathcal{M}, G)\) is hod premouse.

We say \(next_{bex}(\mathcal{M}) \) is \textit{successful} if it is almost successful and there is a unique triple \((\kappa, \lambda, F)\) as above such that if \(G = F \cap \mathcal{M} \), \((\mathcal{M}, G)\) is a solid and universal \(Z \)-validated hod premouse with a \(Z \)-validated strategy and such that \(\rho(\mathcal{M}, G) > \delta^H \).

Suppose now that \(\mathcal{M} \) is appropriate. We say \(\mathcal{M} \) has \textit{badness type is 0} if \(next_{bex}(\mathcal{M}) \) is almost successful but it is not successful. We write \(bad(\mathcal{M}) = 0 \). If \(next_{bex}(\mathcal{M}) \) is successful or not almost successful then

1. if \(next_{bex}(\mathcal{M}) \) is successful then letting \((\kappa, \lambda, F)\) be the unique triple witness the success of \(next_{bex}(\mathcal{M}) \), we let \(next_{bex}(\mathcal{M}) = (\mathcal{M}, G) \) where \(G = F \cap \mathcal{M} \).

2. If \(next_{bex}(\mathcal{M}) \) is not almost successful then we let \(next_{bex}(\mathcal{M}) = \mathcal{M} \).

\(next_\#(\mathcal{M}) \)

Suppose \(\mathcal{M} \) is appropriate and \(bad(\mathcal{M}) \neq 0 \). We let \(next_\#(\mathcal{M}) \) be built as follows: Let \((\mathcal{M}_i : i \leq k)\) be a sequence of \(Z \)-validated hod premice defined as follows:

1. \(\mathcal{M}_0 = next_{bex}(\mathcal{M}) \).

2. If \(i + 1 \leq k \) then there is \(\mathcal{M}^* \) that is an initial segment of \(J[\mathcal{M}_i] \) such that \(\rho(\mathcal{M}^*) < mo(\mathcal{M}_i) \) and letting \(\mathcal{M}^* \) be the least such initial segment of \(J[\mathcal{M}_i] \), \(\mathcal{M}^* \) is solid and universal, \(\rho(\mathcal{M}^*) > \delta^H \) and \(\mathcal{M}_{i+1} = C(\mathcal{M}^*) \).

3. \(k \) is least such that either (i) no level of \(J[\mathcal{M}_k] \) projects across \(mo(\mathcal{M}_k) \) or (ii) some level of \(J[\mathcal{M}_k] \) projects to or below \(\delta^H \).

We say \(next_\#(\mathcal{M}) \) is \textit{successful} if

(a) clause 3(ii) doesn’t happen,

(b) \(\mathcal{M}^\#_k \) is solid and universal,

(c) \(\rho(\mathcal{M}^\#_k) > \delta^H \).

If \(next_\#(\mathcal{M}) \) is successful then let \(next_\#(\mathcal{M}) = C(\mathcal{M}^\#_k) \).

Suppose now that \(\mathcal{M} \) is appropriate. We say \(\mathcal{M} \) has \textit{badness type is 1} if \(next_\#(\mathcal{M}) \) is not successful. We write \(bad(\mathcal{M}) = 1 \).
Suppose now that \mathcal{M} is appropriate and $bad(\mathcal{M}) \neq 0, 1$. We say \mathcal{M} has \textit{badness type 2} if $next_\#(\mathcal{M})$ is not weakly Z-suitable and does not have a Z-validated strategy. We write $bad(\mathcal{M}) = 2$.

$next_s(\mathcal{M})$

Suppose now that \mathcal{M} is appropriate, $bad(\mathcal{M}) \neq 0, 1, 2$ and $next_\#(\mathcal{M})$ is not weakly Z-suitable. Let Σ be the unique Z-validated strategy of $next_\#(\mathcal{M})$. We now define $next_s(\mathcal{M})$ which, in a sense, adds $Lp^\Sigma(next_s(\mathcal{M}))$ to \mathcal{M}.

We let $next_s(\mathcal{M})$ be build as follows: Let $(\mathcal{M}_i, \Sigma_i : i \leq k)$ be a sequence of Z-validated hod premice along with their Z-validated strategies defined as follows:

1. $\mathcal{M}_0 = \mathcal{N}$ and $\Sigma_0 = \Sigma$.
2. If $i + 1 \leq k$ then there is \mathcal{M}^* that is an initial segment of $J[\vec{E}, \Sigma_i](\mathcal{M}_i)$ such that $\rho(\mathcal{M}^*) < mo(\mathcal{M}_i)$ and letting \mathcal{M}^* be the least such initial segment of $J[\vec{E}, \Sigma_i](\mathcal{M}_i)$, \mathcal{M}^* is solid and universal, $\rho(\mathcal{M}^*) > \delta^H$, $\mathcal{M}_{i+1} = C(\mathcal{M}^*)$ and Σ_{i+1} is the unique Z-validated strategy of \mathcal{M}_{i+1}.
3. k is least such that either (i) no level of $J[\vec{E}, \Sigma_k](\mathcal{M}_k)$ projects across $mo(\mathcal{M}_k)$ or (ii) \mathcal{M}_k does not have a Z-validated strategy, or (iii) some level of $J[\vec{E}, \Sigma_k](\mathcal{M}_k)$ projects to or below δ^H.

We say $next_s(\mathcal{M})$ is \textit{successful} if clause 3(ii)-(iii) don’t happen. If $next_s(\mathcal{M})$ is successful then let $next_s(\mathcal{M}) = J[\vec{E}, \Sigma_k](\mathcal{M}_k)|_{\alpha}$ where

$$\alpha = (mo(\mathcal{M}_k)^+)^{J[\vec{E}, \Sigma_k](\mathcal{M}_k)}.$$

Suppose now that \mathcal{M} is appropriate. We say \mathcal{M} has \textit{badness type 3} if $bad(\mathcal{M}) \neq 0, 1$ and $next_s(\mathcal{M})$ is not successful. We write $bad(\mathcal{M}) = 3$. We say \mathcal{M} has \textit{badness type is 4} if $bad(\mathcal{M}) \neq 0, 1, 2, 3$ and $next_s(\mathcal{M})$ doesn’t have Z-validated strategy.

$next_{\Theta-ex}$

Suppose now that \mathcal{M} is appropriate and $bad(\mathcal{M}) \notin 5$. Let Σ be the unique Z-validated strategy of $next_s(\mathcal{M})$. We say that $next_{\Theta-ex}(\mathcal{M})$ is successful if there is a unique \mathcal{M}-extender F such that

1. $\text{crit}(F) = \delta^H$,
2. (\mathcal{M}, F) is a Z-validated hod mouse,
3. $\rho((\mathcal{M}, F)) > \delta^H$.

94
If $\text{next}_{\Theta-ex}(\mathcal{M})$ is successful then we let $\text{next}_{\Theta-ex}(\mathcal{M}) = C((\mathcal{M}, F))$ where F is as above. We say μ has badness type 5 if $\text{next}_{\Theta-ex}(\mathcal{M})$ is not successful. In this case, we write $\text{bad}(\mathcal{M}) = 5$.

Definition 9.2 Suppose \mathcal{M} is appropriate. We say \mathcal{M} is **bad** if $\text{bad}(\mathcal{M})$ is defined.

Definition 9.3 Suppose \mathcal{M} is appropriate. If \mathcal{M} is not bad then we let $\text{next}(\mathcal{M}) = \text{next}_{\Theta-ex}(\mathcal{M})$.

Remark 9.4 In order for $\mathcal{M} \in \text{dom}(\text{next})$ it is necessary that $\text{next}_{\#}(\mathcal{M})$ is not weakly Z-suitable level.

The next function defined above gives us the next model in HFBC(μ), but it doesn’t tell us how to start the construction. We will start HFBC(μ) with \mathcal{H}, which is an appropriate hod premouse. However, if we encounter \mathcal{M} such that $\text{next}_{\#}(\mathcal{M})$ is weakly Z-suitable then we have to continue with the Z-validated sts construction. We get back to HFBC(μ) once we produce the canonical witness to non-Woodiness of $\delta^{\text{next}_{\#}}(\mathcal{M})$. What we do next is we define the start function whose domain will consist of objects that the Z-validated sts construction produces on top of $\text{next}_{\#}(\mathcal{M})$.

$\text{start}(\mathcal{R})$

Suppose \mathcal{R} is a Z-validated hod mouse such that

1. $\text{mo}(\mathcal{R})$ is a Woodin cardinal of $\mathcal{R},$
2. $(\mathcal{R}|\text{mo}(\mathcal{R}))^{\#} \leq \mathcal{R},$
3. \mathcal{R} is sound,
4. \mathcal{R} is an sts premouse over $(\mathcal{R}|\text{mo}(\mathcal{R}))^{\#}$ such that $\text{rud}(\mathcal{R}) \models \text{“mo}(\mathcal{R})$ is not a Woodin cardinal.”

If \mathcal{R} is as above then we write $\mathcal{R} \in \text{dom}(\text{stop})$. Let Σ be the Z-validated strategy of \mathcal{R} if it exists; in the case it does not exist, we declare $\text{start}_0(\mathcal{R})$ is unsuccessful and letting p on \mathcal{R} as in Proposition 8.15, we then switch to the f.b. (Z, λ)-validated sts construction over $\mathcal{M}(p)^{\#}$. In the case Σ exists, we define $\text{start}_0(\mathcal{R})$ just like we defined $\text{next}_s(\mathcal{M})$ above. If $\text{start}_0(\mathcal{R})$ is successful then it will output a Z-validated hod mouse \mathcal{W} that nicely extends \mathcal{H} and has a Z-validated strategy Λ. Moreover, for some $\delta \in \mathcal{W},$

1. $(\mathcal{W}|\delta)^{\#} \leq \mathcal{W}$ is of lsa type,
2. $\mathcal{W} \models \text{“}\delta \text{ is not a Woodin cardinal”},$

3. letting $\mathcal{W}^* \triangleleft \mathcal{W}$ be largest such that $\mathcal{W}^* \models \text{“}\delta \text{ is a Woodin cardinal”},$ \mathcal{W}^* is a
$\Lambda_{\text{stc}([\mathcal{W}|\delta])^\#}$-sts mouse over $(\mathcal{W}|\delta)^\#$ and $\mathcal{W} = J[\vec{E}, \Lambda_{\mathcal{W}^*}][\langle \delta^\# \rangle^\#_{\vec{E}}, \Lambda_{\mathcal{W}^*}].$

Next let $\text{start}_1(\mathcal{R})$ be defined just like $\text{next}_{\Theta - \text{ex}}(\mathcal{M})$ starting with $\text{start}_0(\mathcal{R})$. For $\mathcal{R} \in \text{dom(start)}$ we say $\text{start}(\mathcal{R})$ is successful if both $\text{start}_0(\mathcal{R})$ and $\text{start}_1(\mathcal{R})$ are successful, and we let $\text{start}(\mathcal{R})$ be the model that $\text{start}_1(\mathcal{R})$ outputs.

Definition 9.5 Suppose $\mathcal{R} \in \text{dom(start)}$. We say \mathcal{R} is ready for $\text{HFBC}(\mu)$ if $\text{start}(\mathcal{R})$ is successful.

Notice that if $\text{start}(\mathcal{R})$ is successful then $\text{mo}(\text{start}(\mathcal{R})) = \text{Ord} \cap \text{start}(\mathcal{R})$. We end this subsection with the definition of $\text{HFBC}(\mu)$.

Levels of HFBC

Suppose $\mathcal{M} = \mathcal{H}$ or $\mathcal{M} = \text{start}(\mathcal{R})$ for some $\mathcal{R} \in \text{dom(start)}$ such that $\text{start}(\mathcal{R})$ is successful. Let Σ be the unique Z-validated strategy of \mathcal{M}.

Definition 9.6 We say $(\mathcal{M}_\xi, \Sigma_\xi, \xi < \Omega')$, where $\Omega' \leq \text{Ord}$, are the levels of the hybrid fully backgrounded construction at μ (HFBC(μ)) done with respect to (\mathcal{M}, Σ) if the following conditions hold.

1. $\mathcal{M}_0 = \mathcal{M}$ and $\Sigma_0 = \Sigma$.

2. For each $\xi < \Omega'$, \mathcal{M}_ξ is appropriate and Σ_ξ is the unique Z-validated strategy of \mathcal{M}_ξ.

3. For all $\xi < \Omega'$ if $\xi + 1 < \Omega'$ then \mathcal{M}_ξ is not bad and $\mathcal{M}_{\xi+1} = \text{next}(\mathcal{M}_\xi)$.

4. For all $\xi < \Omega'$, if ξ is a limit ordinal then letting $\mathcal{M}^*_\xi = \text{def liminf}_{\alpha \rightarrow \xi} \mathcal{M}_\alpha$, \mathcal{M}^*_ξ is appropriate and not bad and $\mathcal{M}_\xi = \text{next}(\mathcal{M}^*_\xi)$.

5. Ω' is the least ordinal α such that one of the following conditions hold:

 (a) α is a limit ordinal and \mathcal{M}^*_α is bad.

 (b) α is a limit ordinal and $\text{next}_{\#}(\mathcal{M}^*_\alpha)$ is weakly Z-suitable.

 (c) $\alpha = \beta + 1$ and \mathcal{M}_{β} is bad.

We say HFBC(μ) converges if Ω' is as in clause 5(b), i.e., $\text{next}_{\#}(\mathcal{M}^*_\Omega')$ is weakly Z-suitable. The following proposition is essentially [27, Theorem 11.3].
Proposition 9.7 Suppose $\delta > \mu$ is a Woodin cardinal. Then if for all $\xi < \delta$, \mathcal{M}_ξ is defined then $\Omega' = \delta$ and HFBC converges. Moreover, letting $\mathcal{P}^- = \liminf_{\xi \to \delta} \mathcal{M}_\xi$ and $\mathcal{P} = (\mathcal{P}^*)^\#$ then \mathcal{P} is weakly Z-suitable.

Letting $\delta > \mu$ be the least Woodin cardinal $> \mu$, we need to show that HFBC(μ) either lasts δ steps or encounters a weakly Z-suitable stage. Recall that we defined HFBC(μ) over some (\mathcal{M}, Σ).

10 Putting it all together

We are assuming theory T and let $(S, S_0, \nu_0, \bar{Y}, \bar{A})$ witness it; let $\mu \in S_0$. Combining HFBC(μ) with the fully backgrounded Z-validated sts construction, as shown by Proposition 8.15, we see that we reach an honest Z-suitable \mathcal{R}. In this section, we would like to continue the Z-validated sts construction over \mathcal{R} and show that it must reach an excellent \mathcal{P}. To do this, we will stack fully backgrounded Z-validated sts constructions one on the top of another to reach an almost excellent hybrid premouse which we will show has external iterability. We will then need some arguments that translate iterable almost excellent hybrid premice into an excellent ones.

This stacking idea might be a little bit unnatural but it seems the most straightforward way of dealing with the two main issues at hand. What we would really like to do is to perform the fully backgrounded Z-validated sts construction over \mathcal{R} and hope that it will reach an excellent hybrid premouse. There are two key issues that arise. The final model of our construction has to inherit a stationary class of measurable cardinals. Perhaps the most straightforward way of dealing with this issue is to attempt to show that every measurable cardinal κ such that no cardinal is κ-strong remains measurable in the output of the backgrounded construction. We do not know how to show this without working with more complex forms of backgrounded constructions. Our solution involves just adding the measure by “brute force”. Once the construction reaches one such κ, we will continue by adding the measure coarsely, much like one does in the construction of $L[\mu]$.

The next issue is to guarantee window based iterability. The most natural way of accomplishing this is by showing that the models of our backgrounded construction are iterable. However, this may not work and if it fails, it fails as follows. Suppose \mathcal{N} is a model appearing in the fully backgrounded Z-validated sts construction over \mathcal{R} and κ is a cutpoint cardinal of \mathcal{N}. Suppose \mathcal{N} has no Woodin cardinals above κ. We now seek a Z-validated strategy for \mathcal{N} that acts on iterations above κ. If such a strategy doesn’t exist then we must have a tree \mathcal{T} on \mathcal{N} above κ which does not have a Z-validated Q-structure. Let then $\mathcal{N}_1^- = \mathcal{M}(\mathcal{T})$. It follows that if we
perform fully backgrounded Z-validated sts construction over $\mathcal{N}_1^−$ we will not reach a Q-structure for \mathcal{T}. Let then \mathcal{N}_1 be the one cardinal extension of $\mathcal{N}_1^−$ built by the fully backgrounded Z-validated sts construction over $\mathcal{N}_1^−$. We thus have that $\mathcal{N}_1 ⊨ “δ(\mathcal{T})$ is a Woodin cardinal”.

We now want to see that \mathcal{N}_1 has a window based iterability. Let then $η_1 ∈ (κ, δ(\mathcal{T}))$ be a regular cardinal of \mathcal{N}_1, and we want to argue that $\mathcal{N}_1|η_1$ is iterable. The strategy we seek is again a Z-validated strategy. If it doesn’t exist then we get a tree \mathcal{T}_1 on $\mathcal{N}_1|η_1$ such that \mathcal{T}_1 does not have a Z-validated Q-structure. The construction above produced \mathcal{N}_2 extending $\mathcal{M}(\mathcal{T}_1)$. The goal now is to show that \mathcal{N}_2 has window based iterability. Failure of such a strategy produced $η_2 ∈ (κ, δ(\mathcal{T}_1))$, \mathcal{T}_2 based on \mathcal{N}_2 that is above $κ$ and a model \mathcal{N}_3 extending $\mathcal{M}(\mathcal{T}_2)$. The process outlined above cannot last $ω$ many steps, for if it did we will have a sequence $(\mathcal{N}_i, \mathcal{T}_i : i < ω)$ and a reflected version of this sequence cannot have a well-founded direct limit along the realizable branches.

There is yet another issue that we need to deal with which is not connected with the stacking construction, but has to do with other aspects of the construction. We will need arguments that will show window based iterability in V can somehow be reflected inside the sts premice alluded above. To show this, we will need to break into cases and examine exactly how we ended up with the model we seek. For this reason, we isolate the following hypothesis.

Hypo : For some X containing \mathcal{R} there is a sound Z-validated almost excellent mouse \mathcal{M} over X that is based on \mathcal{R}.

The following essentially follows from the main results of [30].

Proposition 10.1 Assume ¬Hypo. Then for any X containing \mathcal{R}, letting $δ$ be the least Woodin cardinal such that $X ∈ V_δ$, no model of the Z-validated sts construction of $V_δ$ that is based on \mathcal{R} and is done over X, reaches an almost excellent hybrid premouse.

10.1 The prototypical branch existence argument

Here we present an argument due to John Steel that we will use over and over again. The argument is general and can be used in many settings. We will refer to this argument as the *prototypical branch existence argument*. In the sequel, when we need to prove something via the same argument we will just say that “the prototypical branch existence argument shows...”.

98
The prototypical branch existence argument

Suppose δ is a Woodin cardinal, $X \in V_\delta$ is a set such that $\mathcal{R} \in X$ and $(\mathcal{M}_\alpha, \mathcal{N}_\alpha : \alpha \leq \delta)$ are the models of the fully backgrounded Z-validated sts construction done over X. Fix $\alpha \leq \delta$ and suppose that \mathcal{N}_α has no Woodin cardinals (as an sts premouse over X). Let \mathcal{T} be a normal Z-validated iteration of \mathcal{N}_α such that for every limit $\beta < lh(\mathcal{T})$ if $c_\beta = [0, \beta]_T$ then $Q(c_\beta, \mathcal{T} \restr \beta)$ exists and is Z-validated. Suppose that \mathcal{T} has limit length and there is a Z-validated sts mouse Q such that $\mathcal{M}(\mathcal{T}) \subseteq Q$ and $\text{rud}(Q) \models \text{“} \delta(\mathcal{T}) \text{ is not a Woodin cardinal} \text{”}$. Then there is a branch b of \mathcal{T} such that $Q(b, \mathcal{T})$ exists and is equal to Q.

The argument proceeds as follows. Fix some $\lambda \in S_0 - \delta$ and let $\pi_U : M_U \rightarrow H_\zeta$ be a (μ, λ, Z)-good hull such that $\mathcal{T}, Q \in \text{rng}(\pi)$. Let $\nu = |M|$ and let $g \subseteq \text{Coll}(\omega, \nu)$ be generic. Then there is a maximal branch c of \mathcal{T}_U, $\beta \leq \alpha$ and a (weak) embedding $\sigma : \mathcal{M}^{\mathcal{T}_U}_\beta \rightarrow \mathcal{N}_\beta$ such that if c is non-dropping then $\beta = \alpha$ and $\pi_U = \sigma \circ \pi_{\mathcal{T}_U}$. Arguing as in Proposition 8.4, we get that c must be a cofinal branch and that $Q(c, \mathcal{T}_U)$ must exist and be equal to Q_U. It follows then that $c \in M$. Hence, $\pi(c)$ is as desired.

Remark 10.2 It is important to keep in mind that the argument doesn’t work when \mathcal{N}_α has Woodin cardinals as then $Q(c, \mathcal{T}_U)$ may not exist. Thus, this argument cannot in general be used to show that levels of K^c are short tree iterable.

10.2 One step construction

Suppose X is a any set such that $\mathcal{R} \in X$. The main goal of this section is to produce a short-tree-iterable Z-suitable sts hod premouse over X. Here short tree iterability is in the sense of the HOD analysis (cf. [13]).

Definition 10.3 Suppose \mathcal{P} is a Z-validated sts premouse over X based on \mathcal{R}. We say \mathcal{P} is almost Z-good if \mathcal{P}, as an sts premouse over X, has a unique Woodin cardinal $\delta^\mathcal{P}$ such that

1. $\mathcal{P} = (\mathcal{P}|\delta^\mathcal{P})^\#$,

2. if \mathcal{M} is a sound Z-validated sts mouse over \mathcal{P} then $\mathcal{M} \models \text{“} \delta^\mathcal{P} \text{ is a Woodin cardinal} \text{”}.$

We say \mathcal{P} is Z-good if \mathcal{P} has a unique Woodin cardinal δ such that

1. $(\mathcal{P}|\delta)^\#$ is almost Z-good,

2. $\mathcal{P} = Lp_{Z\text{-}
sts}(\mathcal{P}|\delta^\mathcal{P}),$

99
3. for every regular cardinal \(\eta < \delta \), \(P | \eta \) has a \(Z \)-validated strategy.

We say that the \(Z \)-good \(P \) is fully backgrounded if for some maximal window \(w \) and for some \(\xi \in w \), \(P | \delta \) is a model appearing in the fully backgrounded \(Z \)-validated \(\text{sts} \) construction of \(V_\eta \) which uses extenders with critical point \(> \xi \).

Proposition 10.4 Assume \(\neg \text{Hypo} \). There is a \(Z \)-good fully backgrounded \(\text{sts premouse} \) over \(X \) based on \(R \).

We spend this entire subsection proving Proposition 10.4. We will do it in two steps. In the first step we will produce a fully backgrounded almost \(Z \)-good \(N \). Then we will obtain a fully backgrounded \(Z \)-good \(P \). We start with the first step.

Lemma 10.5 Assume \(\neg \text{Hypo} \). There is an almost \(Z \)-good fully backgrounded \(\text{sts premouse} \) over \(X \) based on \(R \).

Proof. Let \(\delta \) be the least Woodin cardinal of \(V \) such that \(X \in V_\delta \). Let \((M_\xi, N_\xi : \xi \leq \Omega^*) \) be the models of the fully backgrounded \(Z \)-validated \(\text{sts} \) construction of \(V_\delta \) done over \(X \) (based on \(R \)). Because we are assuming \(\neg \text{Hypo} \), \(\Omega^* = \delta \). We claim that

Claim. there is \(\xi \leq \delta \) such that \(N_\xi \) is an almost \(Z \)-good \(\text{sts premouse} \).

Proof. Suppose for every \(\xi < \delta \), \(N_\xi \) is not almost \(Z \)-good. We show that \(\mathcal{N} = (N_\delta)^\# \) is an almost \(Z \)-good \(\text{sts premouse} \). A standard reflection argument shows that \(\rho_\omega(\mathcal{N}) = \delta \). Suppose then \(\mathcal{N} \) is not almost \(Z \)-good and fix \(M \) such that

1. \(\mathcal{N} \subseteq M \),
2. \(M \) is sound above \(\delta \),
3. \(\rho_\omega(\delta) < \delta \),
4. \(M \) is \(Z \)-validated and has a \(Z \)-validated \(\text{Ord-strategy} \).

As we are are assuming \(\neg \text{Hypo} \), \(\delta \) is not a limit of Woodin cardinals in \(\mathcal{N} \). Let then \(\pi : M^* \rightarrow M \) be such that letting \(\text{crit}(\pi) = \nu \), \(\pi(\nu) = \delta \) and \(\mathcal{N} \) has no Woodin cardinals in the interval \([\nu, \delta)\).

Working inside \(\mathcal{N} \), let \(\mathcal{N}' \) be the output of the \((R, R^k, S^N)\)-authenticated construction done over \(\mathcal{N}|\nu + 1 \) using extenders with critical points \(> \nu \). Let \(M' \) be the result of translating \(M \) over to \(\mathcal{N}' \) via the \(S \)-construction (see [39, Chapter 6.4]). Similarly, for each \(\mathcal{N} \)-cardinal \(\xi > \nu \) such that \((\mathcal{N}|\xi)^\# \models "\xi \text{ is a Woodin cardinal}" \)
let \(\mathcal{M}_\xi \) witness that our proposition fails for \((\mathcal{N}[\xi])^\# \). For each such \(\xi \) let \(\mathcal{M}'_\xi \) be the result of translating \(\mathcal{M}_\xi \) over to \(\mathcal{N}'[\xi] \).

We now compare \(\mathcal{M}^* \) with the construction producing \(\mathcal{N}' \). In this comparison, only \(\mathcal{M}^* \) is moving. We claim that this comparison lasts \(\delta + 1 \)-steps producing a tree \(T \) on \(\mathcal{M}^* \) with last model \(\mathcal{M}'_\delta \). Indeed, give \(T \upharpoonright \alpha \) where \(\alpha \leq \delta \) is a limit ordinal, if \((\mathcal{M}(T \upharpoonright \alpha))^\# \models \delta(T \upharpoonright \alpha) \text{ is a Woodin cardinal} \) then \(\mathcal{M}'_\alpha \) is defined. Because \(\mathcal{M} \) is a Z-validated sts mouse, we must have a unique cofinal well-founded branch \(b_\alpha \) of \(T \upharpoonright \alpha \) such that \(Q(b, T \upharpoonright \alpha) \) is defined and is equal to \(\mathcal{M}'_\alpha \). We then pick this branch \(b_\alpha \) at stage \(\alpha \).

It must now be clear that the existence of \(T \) violates universality; this implies by standard results that there must be a superstrong cardinal in \(\mathcal{N} \). □

The claim finishes the proof. □

We now start the proof of Proposition 10.4. Towards a contradiction, we assume that there is no fully backgrounded Z-good sts premouse over \(X \) based on \(\mathcal{R} \). Let \(\mathcal{N}_0 \) be a fully backgrounded almost Z-good sts premouse over \(X \) based on \(\mathcal{R} \).

Below given \(S \), \(\delta^S \) will always denote the largest Woodin of \(S \) and \(w^S \) will denote the maximal window \(w \) of \(S \) such that \(\delta^w = \delta^S \).

We now by induction produce an infinite sequence \((\mathcal{N}_i, \nu_i, T_i : i < \omega) \) such that

1. for every \(i < \omega \), \(\mathcal{N}_i \) is a fully backgrounded almost Z-good sts premouse over \(X \) based on \(\mathcal{R} \),

2. for every \(i < \omega \), \(\nu_i \) is a successor cardinal of \(\mathcal{N}_i \),

3. for every \(i < \omega \), \(T_i \) is a normal Z-validated iteration of \(\mathcal{N}_i|\nu_i \) such that \(T_i \) has no cofinal well-founded branch \(b \) such that \(Q(b, T_i) \) exists and is a Z-validated mouse,

4. for every \(i < \omega \), \(\mathcal{N}_{i+1} = \mathcal{M}(T_i)^\# \).

A simple reflection argument shows that such a sequence cannot exist. The fact that for \(i > 0 \), \(\mathcal{N}_i \) is fully backgrounded is irrelevant for the reflected argument alluded in the previous sentence. It is enough that \(\mathcal{N}_0 \) is fully backgrounded.

Assume then we have built \(\mathcal{N}_i \) and we now describe the procedure for getting \((\nu_i, T_i, \mathcal{N}_{i+1}) \). Because \(\mathcal{N}_i \) is not Z-good, there is a \(\nu_i \in w^{\mathcal{N}_i} \) which is a successor cardinal of \(\mathcal{N}_i \) and \(\mathcal{N}_i|\nu_i \) does not have a Z-validated strategy.

Let \(\eta \) be some Woodin cardinal such that \(\mathcal{N}_i \in V_\eta \) and let \(\xi_\eta < \eta \) be such that \(\mathcal{N}_i \in H_{\xi_\eta} \) and there are no Woodin cardinals in the interval \((\xi_\eta, \eta) \). Let \((\mathcal{M}_\alpha^\eta, S_\alpha^\eta : \)
Let \(\alpha \leq \eta \) be the models of the fully backgrounded \(Z \)-validated sts construction of \(V_\eta \) done over \(X \) using extenders with critical points \(> \xi_\eta \).

As \(N_i \in H_\xi \), in the comparison of \(W = \text{def} \ N_i|\nu_i \) with the construction \((M^\alpha_\eta, S^\alpha_\eta : \alpha \leq \eta)\) only \(W \) moves. We now analyze the tree on \(W \). Suppose \(T^n \) is the tree on \(W \) built via the above comparison and suppose \(T^n \) has a limit length. We now have two cases.

Case 1. Suppose there is \(\alpha \) such that \(S^\alpha_\eta \vDash "\delta(T) \text{ is not a Woodin cardinal}" \). It follows from the prototypical argument that there must be a cofinal branch \(b \) of \(T \) such that \(Q(b, T) \) exists and is a \(Z \)-validated mouse. We then extend \(T^n \) by adding \(b \).

Case 2. Suppose there is no \(\alpha \leq \eta \) such that \(S^\alpha_\eta \vDash "\delta(T) \text{ is not a Woodin cardinal}" \). In this case, we stop the construction and set \(N_{i+1} = M(\mathcal{T})^# \) and \(T_i = T \).

We stop the construction if either Case 2 holds or for some \(\alpha \), \(M^\alpha_\eta \) is the last model of \(T \) and \(\pi^T \) exists.

We now claim that for some \(\eta \), the construction of \(T^n \) stops because of Case 2. Assume otherwise. Then for each Woodin cardinal \(\eta \) we have \(\alpha^\eta_\eta \) and an embedding \(\pi : W \to M^\eta_\alpha^\eta \). As \(W \) has no Woodin cardinals, it follows that for every \(\eta \), \(W \) is \(\xi_\eta \)-iterable via a \(Z \)-validated strategy. As \(\text{Ord} = \bigcup_\eta \xi_\eta \), we have that \(W \) is \(\text{Ord} \)-iterable via a \(Z \)-validated strategy. Hence, for some \(\eta \), Case 2 must be the cause for stopping the construction of \(T^n \). Below we drop \(\eta \) from subscripts.

To finish the proof of Proposition 10.4 we need to show that \(N_{i+1} \) is almost \(Z \)-good. This easily follows from universality. Because \(\delta(T) \) is Woodin in \(S_\eta \), we must have that \(N_{i+1} \subseteq S_\eta \). If now \(M \) is a \(\delta(T) \)-sound \(Z \)-validated sts mouse then because \(T \) has no \(Q \)-structure, we must have that \(\rho(M) \geq \delta(T) \) and \(M \vDash "\delta(T) \text{ is a Woodin cardinal}" \) (as otherwise the prototypical argument would yield a branch of \(T \)).

10.3 Stacking suitable sts mice

In this section, assuming \(\neg \text{Hypo} \) we build an almost excellent hybrid premouse. We achieve this by stacking fully backgrounded \(Z \)-good sts premice. As we said in the introduction to this section, we will make sure that a stationary set of measurable cardinals will remain measurable in the model produced by our construction. This will be achieved by adding each such measures by brute force.

By induction we define a sequence \(K^\alpha = (K_\alpha : \alpha \in \Omega) \), called a \(Z \)-good stack, such that

\[^{67}\text{There can be many such stacks.} \]

102
1. K_0 is a fully backgrounded Z-good sts premouse over R.

2. For every α, $K_{\alpha+1}$ is a fully backgrounded Z-good sts hod premouse over K_{α}.

3. If α is a limit ordinal and $\text{Ord} \cap \bigcup_{\beta<\alpha} K_{\beta} \notin S$ then $K_{\alpha} = \text{Lp}^{Z,v,sts}(\bigcup_{\beta<\alpha} K_{\beta})$.

4. If α is a limit ordinal and $\lambda = \text{def} \text{Ord} \cap \bigcup_{\beta<\lambda} K_{\beta} \in S$ then letting U be a normal measure on λ and setting $K'_{\alpha} = \bigcup_{\beta<\alpha} K_{\beta}$ and $K''_{\alpha} = \pi_U(K'_\alpha)|\langle \lambda^+ \rangle^{\pi_U(K'_\alpha)}$, $K'''_{\alpha} = (K''_{\alpha}, E)$ where E is the $(\lambda, (\lambda^+)^{\pi_U(K'_\alpha)})$-extender derived from π_U and K_{α} is the core of K'''_{α}.

We call \vec{K} the $(f.b.Z)$-validated stack. The construction of \vec{K} is straightforward. However, we need to verify the following three statements.

(S1) For $\alpha < \beta$, if δ is a Woodin cardinal of K_{α} then no level of K_{β} projects across δ and $K_{\beta} \models \"\delta \text{ is a Woodin cardinal}\"$.

(S2) If $\text{Ord} \cap \bigcup_{\beta<\lambda} K_{\beta} \in S$ then λ is a measurable cardinal in $K_{\lambda+1}$.

(S3) The class of λ such that $\text{Ord} \cap \bigcup_{\beta<\lambda} K_{\beta} \in S$ is stationary.

We now prove the above three clauses by proving a sequence of lemmas.

Lemma 10.6 For every α, K_{α} and is a Z-validated mouse. If $\alpha \in S$ is such that $\text{Ord} \cap \bigcup_{\beta<\lambda} K_{\beta} \in S$, then K'_{α}, K''_{α}, K'''_{α} are also Z-validated mice.

Lemma 10.6 is a consequence of [30, Corollary 3.16]. This corollary shows that if U is a good hull then the pre-images of the relevant objects have iteration strategies that pick realizable branches, which implies that they have Z-approved strategies.

Lemma 10.7 (S1) holds.

Proof. Fix $\alpha < \beta$ and δ as in the statement of (S1). Suppose $M \subseteq K_{\beta}$ is such that $\rho(M) < \delta$. It follows from our construction that for some $\gamma + 1 \leq \alpha$, $\delta = \delta^{K_{\gamma+1}}$. Let p be the standard parameter of M and n be least such that $\rho_{n+1} < \delta$. Let $W = \text{Core}^M_n(\delta \cup \{p\})$. As M is Z-validated sts premouse and $K_{\gamma+1}$ is Z-suitable, we must have that $\text{rud}(W) \models \"\delta \text{ is a Woodin cardinal}\"$. Hence, $\rho(W) = \delta$, contradiction. A similar argument shows that $K_{\beta} \models \"\delta \text{ is a Woodin cardinal}\"$. \Box

Lemma 10.8 (S2) holds.
Proof. First we claim that $\rho(K_\lambda) > \lambda$. Lemma 10.7 shows that $\rho(K_\lambda) \geq \lambda$. Assume then that $\rho(K_\lambda) = \lambda$. Let $W = Core(K_\lambda)$ and U be the normal measure on λ. Because of our definition of \vec{K}, we have that

$$Ult(V, U) \models K''_\lambda = Lp^{Zv,sts}(K'_\lambda).$$

Let now F be the last extender of W. As $|W| = \lambda$, we have $\sigma : Ult(W, F) \rightarrow \pi_U(W)$ such that $\sigma \in Ult(V, U)$. It follows that

$$Ult(V, U) \models Ult(W, F)$$

is a Z-validated sts premouse over K'_λ. Hence, $Ult(W, F) \preceq K''_\lambda$ implying that $W \in K''_\lambda$. Thus, $\rho(K_\lambda) > \lambda$.

The same argument shows that if $M \preceq K_{\lambda+1}$ then $\rho(M) > \lambda$. Thus, λ must be a measurable cardinal in $K_{\lambda+1}$. □

(S3) is trivial. It then follows that $\bigcup_{\alpha \in \text{Ord}} K_\alpha$ is an almost excellent hybrid premouse.

10.4 The conclusion assuming $\neg\text{Hypo}$

We remind our reader that we have gotten to this point by assuming that $\neg\text{Hypo}$ holds. The following summarizes the results of the previous subsection.

Corollary 10.9 Assume $\neg\text{Hypo}$. Then there is an honest Z-suitable R and a Z-validated almost excellent class size premouse K base on R satisfying the following condition.

1. For each maximal window w of K and for each $\eta \in (\nu^w, \delta^w)$ that is a regular cardinal in K, K has a Z-validated iteration strategy Σ that acts on normal iterations that are based on $K|\eta$ and are above ν^w.

2. For each maximal window w of K, $K|\delta^w$ is a fully backgrounded Z-good sts premouse over $K|\nu^w$.

3. For each Woodin cardinal δ of K and for each Z-validated sound sts mouse M such that $K|\delta \preceq M$, $M \models \"\delta$ is a Woodin cardinal\".

The next proposition completes the proof Theorem 1.4 and Theorem 1.8 assuming $\neg\text{Hypo}$.

Proposition 10.10 Assume $\neg\text{Hypo}$. Then there is a class size excellent hybrid premouse.
We spend the rest of this subsection proving Proposition 10.10. Let \(R \) and \(K \) be as in Corollary 10.9. We claim that in fact \(K \) is excellent. To see this let \(w \) be a maximal window of \(K \) and let \(\eta \in (\nu^w, \delta^w) \) be a regular cardinal of \(K \). We want to see that in \(K \), \(K|\eta \) has an iteration strategy that acts on normal iterations that are above \(\nu^w \). Let \(\Sigma \) be the Z-validated strategy of \(K|\eta \) that acts on normal iterations that are above \(\nu^w \). It is enough to show that \(\Sigma \upharpoonright K \) is definable over \(K \).

We work inside \(K \). Given a normal iteration \(T \) of \(K|\eta \) that is above \(\nu^w \), we will say \(T \) has a correct \(Q \)-structure if letting \((u, \zeta, (M_\xi, N_\xi : \xi \leq \delta^u))\) be such that

1. \(u \) is the least maximal window of \(K \) with the property that \(T \in K|\delta^u \),
2. \(\zeta \in (\nu^u, \delta^u) \) is such that \(T \in K|\zeta \),
3. \((M_\xi, N_\xi : \xi < \delta^u)\) are the models of the fully backgrounded \((R, R^b, S^K)\)-authenticated sts construction of \(K|\delta^u \) done over \(M(T) \) using extenders with critical points \(> \zeta \),

for some \(\xi < \delta^u \), \(M_\xi \models "\delta(T) is not a Woodin cardinal". \) We then say that \(M_\xi \) is the correct \(Q \)-structure for \(T \). We have that \(M_\xi \) has a Z-validated iteration strategy, and hence if it exists it is unique (i.e. does not depend on \(\zeta \)).

Continuing our work in \(K \), given \(T \) as above we say \(T \) is correctly guided if for every limit \(\alpha < lh(T) \), letting \(b = [0, \alpha]_T \), \(Q(b, T \upharpoonright \alpha) \) exists and is the correct \(Q \)-structure of \(T \). The following lemma finishes the proof of Proposition 10.10.

Lemma 10.11 Suppose \(T \in K \) is a normal iteration of \(K|\eta \) of limit length that is according to \(\Sigma \). Then \(T \) is correctly guided and if \(T \) is of limit length then \(T \) has a correct \(Q \)-structure.

Proof. The second part of the conclusion of the lemma implies the first as we can apply it to the initial segments of \(T \). Thus assume that \(T \) is correctly guided and is of limit length. Let \(b = \Sigma(T) \). Then \(Q(b, T) \) exists and Z-validated. Set \(Q = Q(b, T) \).

Let \((u, \zeta, (M_\xi, N_\xi : \xi \leq \delta^u))\) be as in the definition of the correct \(Q \)-structure. Towards a contradiction assume that letting \(N' =_{def} M_{\delta^u} \), \(N \models "\delta(T) is a Woodin cardinal". \) Notice that \(K|\delta^u \) is generic over \(N \), implying that we can translate \(K \) via \(S \)-constructions into an sts premouse over \(N \), call it \(K' \). We have that \(K' \models "\delta(T) is a Woodin cardinal" and \(K' \) is almost excellent.

Next we compare \(Q \) with \(K' \). All of the extenders on the extender sequence of \(K' \) have fully backgrounded certificates, which implies that in the aforementioned comparison only the \(Q \)-side moves. Let \(\Lambda \) be the unique Z-validated strategy of \(Q \).
and let \(U \) be the tree on \(Q \) of limit length such that \(\mathcal{M}(U) = \mathcal{K}'|\delta^u \). Set \(c = \Lambda(U) \) and \(\mathcal{M} = Q(c, U) \).

Notice now that \(\mathcal{M} \) is \(\delta^u \)-sound, \(\delta^u \) is a cutpoint in \(\mathcal{M} \) and \(\mathcal{M} \) has no extenders with critical point \(\delta^u \). Moreover, \(\mathcal{M} \) is a \(Z \)-validated sts mouse over \(\mathcal{K}'|\delta^u \), and therefore, it can be translated into a \(Z \)-validated sts mouse \(\mathcal{X} \) over \(\mathcal{K}|\delta^u \). We must then have that \(\text{rud}(\mathcal{X}) \models "\delta^u \text{ is a Woodin cardinal}" \). But then \(\text{rud}(\mathcal{M}) \models "\delta^u \text{ is a Woodin cardinal}" \), contradiction.

\(\Box \)

Notice now that for \(T \in \mathcal{K} \) we have the following equivalences.

1. \(T \in \text{dom}(\Sigma) \) if and only if \(\mathcal{K} \models "T \text{ is correctly guided}" \).

2. \(\Sigma(T) = b \) if and only if \(Q(b, T) \) exists and \(\mathcal{K} \models "Q(b, T) \text{ is the correct } Q \text{-structure for } T" \).

10.5 Excellent hybrid premouse from Hypo

Finally we show how to get an excellent hybrid premouse from Hypo. This will complete the proof of Theorem 1.4 and Theorem 1.8. Suppose then \(\mathcal{R} \) is an honest \(Z \)-suitable hod premouse, \(X \) is a set such that \(\mathcal{R} \in X \) and \(\mathcal{M} \) is an almost excellent \(Z \)-validated sts premouse over \(X \). In particular, \(\mathcal{M} \) is a model of \(\text{ZFC} \). It must be clear from our construction that we can assume that \(X \) has a well-ordering in \(L[X] \). Let then \(\kappa = (|X|^+)^M \). Let \(\delta \) be the least Woodin cardinal of \(\mathcal{M} \) that is \(> \kappa \), and let \(\mathcal{N} \) be the output of the fully backgrounded \((\mathcal{R}, \mathcal{R}^b, S^M)\)-authenticated sts construction of \(\mathcal{M}|\delta \) done over \(\mathcal{R} \). Once again using \(S \)-constructions, we can translate \(\mathcal{M} \) over to an sts mouse \(\mathcal{P} \) over \(\mathcal{N} \) such that \(\mathcal{P}|\mathcal{M}|\delta = \mathcal{M} \). Moreover, \(\mathcal{P} \) is almost excellent and is a \(Z \)-validated sts mouse over \(\mathcal{R} \). Because good hulls of \(\mathcal{P} \) are iterable via a \(Z \)-approved strategy, we can, by minimizing if necessary, that \(\mathcal{P} \) is minimal in the sense that for each \(\eta \in (\delta^R, \text{Ord} \cap \mathcal{P}) \), \(\mathcal{P}|\eta \) is not an almost excellent sts premouse over \(\mathcal{R} \).

The rest of the proof follows the same argument as the one given in the previous subsection. We show that \(\mathcal{P} \) is in fact excellent. As before, this amounts to showing that for an window \(w \) of \(\mathcal{P} \) such that \(\delta^w > \delta^R \), and for any \(\eta \in (\nu^w, \delta^w) \), if \(\eta \) is a regular cardinal of \(\mathcal{P} \) then \(\mathcal{P} \models "\mathcal{P}|\eta \text{ has Ord-iteration strategy}" \). Towards a contradiction assume not.

Let \(U \) be a good hull such that \(\mathcal{P} \in U \). Set \(\mathcal{S} = \mathcal{P}_U \), \(\mathcal{W} = \mathcal{R}_U \) and \(\lambda = \eta_U \). Let \(\Lambda \) be the \(Z \)-approved strategy of \(\mathcal{S} \) and let \(\Sigma \) be the fragment of \(\Lambda \) that acts on normal

\(^{68} \)Notice that \(Q(c, U) \) must exist as \(Q \) projects to \(\delta(T) \).
iterations of $S|\lambda$ that are above ν^{ω_1}. The following lemma can be proved via a proof almost identical to the proof of Lemma 10.11. We define correct Q-structure and correctly guided exactly the same way as we defined them in the previous subsection, except the definition now takes place in S.

Lemma 10.12 Suppose $\mathcal{T} \in S$ is a normal iteration of $S|\eta$ of limit length that is according to Σ. Then \mathcal{T} is correctly guided and if \mathcal{T} is of limit length then \mathcal{T} has a correct Q-structure.

There is only one difference between the proofs of Lemma 10.11 and Lemma 10.12. In the proof of Lemma 10.11, we concluded that $\text{rud}(\mathcal{X}) = \delta^u$ is a Woodin cardinal” using the fact that $(\mathcal{K}|\delta^u)^\#$ is Z-suitable sts premouse. Here we no longer have such a fact, but here we can use minimality of \mathcal{P} to derive the same conclusion.

As in the previous subsection, Lemma 10.12 easily implies that $\Sigma \upharpoonright \mathcal{P}$ is definable over \mathcal{P}. This completes the proof of Theorem 1.4 and Theorem 1.8.

11 Open problems and questions

The rather mild assumption that the class of measurable cardinals is stationary is used in various “pressing down” arguments in the proof of Theorem 1.4 and Theorem 1.8, and also in a stabilization arguments like those of Theorem 5.1. This assumption is probably not needed, though proving some sort of stabilization lemma like the aforementioned one is probably necessary.

Question 11.1 Are the following theories equiconsistent?

1. Sealing + “There is a proper class of Woodin cardinals”.

2. LSA − over − uB + “There is a proper class of Woodin cardinals”.

3. Tower Sealing + “There is a proper class of Woodin cardinals”.

As mentioned above, CMI becomes very difficult past Sealing. A good test question for CMI practitioners is.

Open Problem 11.2 Prove that $\text{Con}(\text{PFA})$ implies $\text{Con}(\text{WLW})$.

We know from the results above that WLW is stronger than Sealing and is roughly the strongest natural theory at the limit of traditional methods for proving iterability. We believe it is plausible to develop CMI methods for obtaining canonical models of
WLW from just PFA.\footnote{The second author observes, cf. [41], that assuming PFA and there is a Woodin cardinal, then there is a canonical model of WLW. The proof is not via CMI methods, but just an observation that the full-backgrounded construction as done in [30] reaches a model of WLW. The Woodin cardinal assumption is important here. The argument would not work if one assumes just PFA and/or a large cardinal milder than a Woodin cardinal, e.g. a measurable cardinal or a strong cardinal.} The paper [41] is the first step towards this goal; in the paper, we have constructed from PFA hod mice that are stronger than \mathcal{P} in Definition 2.6.

Remark 11.3

1. By the above discussion, we also get in $V = \mathcal{P}[g]$ that for every generic h, $(\Gamma^\infty_h)^#$ exists and by Lemma 3.2, $L(\Gamma^\infty_h) \models \text{AD}_R + \Theta$ is regular. So we have the following strengthening of Sealing: Sealing$^+$ for all V-generic g, in $V[g]$, $L(\Gamma^\infty, R) \models \text{AD}_R + \Theta$ is regular. We call this theory Sealing$^+$.

2. The conclusion of LSA $-$ over $-$ uB can be weakened to: For all V-generic g there is $A \subseteq R^{V[g]}$ such that $L(A, R^{V[g]}) \models \text{LSA}$ and Γ^∞_g is contained in $L(A, R^{V[g]})$. We call this theory LSA $-$ over $-$ uB^-.

3. The results of this paper show the following. Let $T =$ “there exists a proper class of Woodin cardinals and the class of measurable cardinals is stationary”. Then the following theories are equiconsistent:

(a) Sealing $+$ T.
(b) Sealing$^+$ $+$ T.
(c) Tower Sealing $+$ T.
(d) LSA $-$ over $-$ uB $+$ T.
(e) LSA $-$ over $-$ uB^- $+$ T.
(f) Weak Sealing $+$ T.
(g) Sealing$^-$ $+$ T.

We end the paper with the following conjecture, if true, would be an ultimate analog of the main result of [52].

Conjecture 11.4 Suppose there are unboundedly many Woodin cardinals and the class of measurable cardinals is stationary. Then the following are equivalent.

1. Sealing.

2. Sealing$^+$.

69The second author observes, cf. [41], that assuming PFA and there is a Woodin cardinal, then there is a canonical model of WLW. The proof is not via CMI methods, but just an observation that the full-backgrounded construction as done in [30] reaches a model of WLW. The Woodin cardinal assumption is important here. The argument would not work if one assumes just PFA and/or a large cardinal milder than a Woodin cardinal, e.g. a measurable cardinal or a strong cardinal.
3. Weak Sealing.
4. Sealing$^−$.
5. Tower Sealing.

References

110

[34] Grigor Sargsyan. Covering conjectures, or how to prove □ below superstrong. Submitted. Available at math.rutgers.edu/~gs481/lsa.pdf.

[38] Grigor Sargsyan. AD_R implies that every set of reals is θ-uB. 2018. Submitted. Available at math.rutgers.edu/~gs481/lsa.pdf.

